A297402
a(n) = gcd_{k=1..n} (prime(k+1)^n-1)/2.
Original entry on oeis.org
1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 32, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 64, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 32, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 128, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 32, 1, 4, 1, 8, 1, 4, 1, 16, 1, 4, 1, 8, 1, 4, 1, 64, 1, 4, 1, 8
Offset: 1
a(4)=8 because for n=4 and for the first 4 odd primes {3, 5, 7, 11}, the term (p^n-1)/2 gives {40, 312, 1200, 7320} with a GCD of 8.
-
a[n_] := GCD @@ Array[(Prime[# +1]^n -1)/2 &, n]; Array[a, 90] (* slightly modified by Robert G. Wilson v, Jan 01 2018 *)
a[n_] := If[EvenQ[n], 2^(FactorInteger[n][[1]][[2]] + 1), 1]; Array[a, 90] (* Frank M Jackson, Jul 28 2018 *)
-
a(n) = gcd(vector(n, i, (prime(i+1)^n-1)/2)) \\ Iain Fox, Dec 29 2017
-
a(n)=if(n%2,1,2)<Charles R Greathouse IV, Jan 06 2018
A370067
Square array read by ascending antidiagonals: T(n,k) is the size of the group Q_p*/(Q_p*)^k, where p = prime(n), and Q_p is the field of p-adic numbers.
Original entry on oeis.org
1, 1, 8, 1, 4, 3, 1, 4, 9, 32, 1, 4, 3, 8, 5, 1, 4, 9, 16, 5, 24, 1, 4, 3, 8, 25, 36, 7, 1, 4, 9, 8, 5, 12, 7, 128, 1, 4, 3, 16, 25, 36, 7, 16, 9, 1, 4, 9, 16, 5, 12, 49, 32, 81, 40, 1, 4, 3, 8, 5, 36, 7, 16, 9, 20, 11, 1, 4, 3, 8, 5, 12, 7, 16, 27, 100, 11, 96, 1, 4, 9, 16, 5, 36, 7, 32, 9, 20, 11, 72, 13
Offset: 1
Table reads
1, 8, 3, 32, 5, 24, 7, 128, 9, 40
1, 4, 9, 8, 5, 36, 7, 16, 81, 20
1, 4, 3, 16, 25, 12, 7, 32, 9, 100
1, 4, 9, 8, 5, 36, 49, 16, 27, 20
1, 4, 3, 8, 25, 12, 7, 16, 9, 100
1, 4, 9, 16, 5, 36, 7, 32, 27, 20
1, 4, 3, 16, 5, 12, 7, 64, 9, 20
1, 4, 9, 8, 5, 36, 7, 16, 81, 20
1, 4, 3, 8, 5, 12, 7, 16, 9, 20
1, 4, 3, 16, 5, 12, 49, 32, 9, 20
-
T(n, k) = my(p = prime(n), e = valuation(k, p)); k * p^e*gcd(p-1, k/p^e) * if(p==2 && e>=1, 2, 1)
A370565
Size of the group Q_3*/(Q_3*)^n, where Q_3 is the field of 3-adic numbers.
Original entry on oeis.org
1, 4, 9, 8, 5, 36, 7, 16, 81, 20, 11, 72, 13, 28, 45, 32, 17, 324, 19, 40, 63, 44, 23, 144, 25, 52, 729, 56, 29, 180, 31, 64, 99, 68, 35, 648, 37, 76, 117, 80, 41, 252, 43, 88, 405, 92, 47, 288, 49, 100, 153, 104, 53, 2916, 55, 112, 171, 116, 59, 360, 61, 124, 567, 128
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3]}, 2^Min[e2, 1] * 3^e3 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=3}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
A370566
Size of the group Q_5*/(Q_5*)^n, where Q_5 is the field of 5-adic numbers.
Original entry on oeis.org
1, 4, 3, 16, 25, 12, 7, 32, 9, 100, 11, 48, 13, 28, 75, 64, 17, 36, 19, 400, 21, 44, 23, 96, 625, 52, 27, 112, 29, 300, 31, 128, 33, 68, 175, 144, 37, 76, 39, 800, 41, 84, 43, 176, 225, 92, 47, 192, 49, 2500, 51, 208, 53, 108, 275, 224, 57, 116, 59, 1200, 61, 124, 63, 256
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e5 = IntegerExponent[n, 5]}, 2^Min[e2, 2] * 5^e5 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=5}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
A370567
Size of the group Q_7*/(Q_7*)^n, where Q_7 is the field of 7-adic numbers.
Original entry on oeis.org
1, 4, 9, 8, 5, 36, 49, 16, 27, 20, 11, 72, 13, 196, 45, 32, 17, 108, 19, 40, 441, 44, 23, 144, 25, 52, 81, 392, 29, 180, 31, 64, 99, 68, 245, 216, 37, 76, 117, 80, 41, 1764, 43, 88, 135, 92, 47, 288, 2401, 100, 153, 104, 53, 324, 55, 784, 171, 116, 59, 360, 61, 124, 1323, 128
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3], e7 = IntegerExponent[n, 7]}, 2^Min[e2, 1] * 3^Min[e3, 1] * 7^e7 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=7}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
A370180
Size of the group Z_3*/(Z_3*)^n, where Z_3 is the ring of 3-adic integers.
Original entry on oeis.org
1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 3, 2, 1, 6, 1, 2, 27, 2, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 54, 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 3, 2, 1, 6, 1, 2, 81, 2, 1, 6, 1, 2, 3, 2, 1, 18
Offset: 1
We have Z_3*/(Z_3*)^3 = Z_3* / ((1+9Z_3) U (8+9Z_3)) = (Z/9Z)*/((1+9Z) U (8+9Z)) = C_3, so a(3) = 3.
We have Z_3*/(Z_3*)^6 = Z_3* / (1+9Z_3) = (Z/9Z)*/(1+9Z) = C_6, so a(6) = 6.
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3]}, 2^If[e2 == 0, 0, 1] * 3^e3]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n,{p=3}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
A370181
Size of the group Z_5*/(Z_5*)^n, where Z_5 is the ring of 5-adic integers.
Original entry on oeis.org
1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 25, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 50, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 25, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10
Offset: 1
We have Z_5*/(Z_5*)^5 = Z_5* / ((1+25Z_5) U (7+25Z_5) U (18+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (7+25Z) U (18+25Z) U (24+25Z)) = C_5, so a(5) = 5.
We have Z_5*/(Z_5*)^10 = Z_5* / ((1+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (25+25Z)) = C_10, so a(10) = 10.
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e5 = IntegerExponent[n, 5]}, 2^Min[e2, 2] * 5^e5]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n,{p=5}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
A370182
Size of the group Z_7*/(Z_7*)^n, where Z_7 is the ring of 7-adic integers.
Original entry on oeis.org
1, 2, 3, 2, 1, 6, 7, 2, 3, 2, 1, 6, 1, 14, 3, 2, 1, 6, 1, 2, 21, 2, 1, 6, 1, 2, 3, 14, 1, 6, 1, 2, 3, 2, 7, 6, 1, 2, 3, 2, 1, 42, 1, 2, 3, 2, 1, 6, 49, 2, 3, 2, 1, 6, 1, 14, 3, 2, 1, 6, 1, 2, 21, 2, 1, 6, 1, 2, 3, 14, 1, 6, 1, 2, 3, 2, 7, 6, 1, 2, 3, 2, 1, 42, 1, 2, 3, 2, 1, 6
Offset: 1
We have Z_7*/(Z_7*)^7 = Z_7* / ((1+49Z_7) U (18+49Z_7) U (19+49Z_7) U (30+49Z_7) U (31+49Z_7) U (48+49Z_7)) = (Z/49Z)*/((1+49Z) U (18+49Z) U (19+49Z) U (30+49Z) U (31+49Z) U (48+49Z)) = C_7, so a(7) = 7.
We have Z_7*/(Z_7*)^14 = Z_7* / ((1+49Z_7) U (18+49Z_7) U (30+49Z_7)) = (Z/49Z)*/((1+49Z) U (18+49Z) U (30+49Z)) = C_14, so a(14) = 14.
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3], e7 = IntegerExponent[n, 7]}, 2^Min[e2, 1] * 3^Min[e3, 1] * 7^e7]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n,{p=7}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
A370564
Size of the group Q_2*/(Q_2*)^n, where Q_2 is the field of 2-adic numbers.
Original entry on oeis.org
1, 8, 3, 32, 5, 24, 7, 128, 9, 40, 11, 96, 13, 56, 15, 512, 17, 72, 19, 160, 21, 88, 23, 384, 25, 104, 27, 224, 29, 120, 31, 2048, 33, 136, 35, 288, 37, 152, 39, 640, 41, 168, 43, 352, 45, 184, 47, 1536, 49, 200, 51, 416, 53, 216, 55, 896, 57, 232, 59, 480, 61, 248, 63, 8192
Offset: 1
-
a[n_] := Module[{e = IntegerExponent[n, 2]}, 2^If[e == 0, 0, e + 1] * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n) = my(e = valuation(n, 2)); n * 2^e * if(e>=1, 2, 1)
Showing 1-9 of 9 results.
Comments