A370067
Square array read by ascending antidiagonals: T(n,k) is the size of the group Q_p*/(Q_p*)^k, where p = prime(n), and Q_p is the field of p-adic numbers.
Original entry on oeis.org
1, 1, 8, 1, 4, 3, 1, 4, 9, 32, 1, 4, 3, 8, 5, 1, 4, 9, 16, 5, 24, 1, 4, 3, 8, 25, 36, 7, 1, 4, 9, 8, 5, 12, 7, 128, 1, 4, 3, 16, 25, 36, 7, 16, 9, 1, 4, 9, 16, 5, 12, 49, 32, 81, 40, 1, 4, 3, 8, 5, 36, 7, 16, 9, 20, 11, 1, 4, 3, 8, 5, 12, 7, 16, 27, 100, 11, 96, 1, 4, 9, 16, 5, 36, 7, 32, 9, 20, 11, 72, 13
Offset: 1
Table reads
1, 8, 3, 32, 5, 24, 7, 128, 9, 40
1, 4, 9, 8, 5, 36, 7, 16, 81, 20
1, 4, 3, 16, 25, 12, 7, 32, 9, 100
1, 4, 9, 8, 5, 36, 49, 16, 27, 20
1, 4, 3, 8, 25, 12, 7, 16, 9, 100
1, 4, 9, 16, 5, 36, 7, 32, 27, 20
1, 4, 3, 16, 5, 12, 7, 64, 9, 20
1, 4, 9, 8, 5, 36, 7, 16, 81, 20
1, 4, 3, 8, 5, 12, 7, 16, 9, 20
1, 4, 3, 16, 5, 12, 49, 32, 9, 20
-
T(n, k) = my(p = prime(n), e = valuation(k, p)); k * p^e*gcd(p-1, k/p^e) * if(p==2 && e>=1, 2, 1)
A370565
Size of the group Q_3*/(Q_3*)^n, where Q_3 is the field of 3-adic numbers.
Original entry on oeis.org
1, 4, 9, 8, 5, 36, 7, 16, 81, 20, 11, 72, 13, 28, 45, 32, 17, 324, 19, 40, 63, 44, 23, 144, 25, 52, 729, 56, 29, 180, 31, 64, 99, 68, 35, 648, 37, 76, 117, 80, 41, 252, 43, 88, 405, 92, 47, 288, 49, 100, 153, 104, 53, 2916, 55, 112, 171, 116, 59, 360, 61, 124, 567, 128
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3]}, 2^Min[e2, 1] * 3^e3 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=3}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
A370566
Size of the group Q_5*/(Q_5*)^n, where Q_5 is the field of 5-adic numbers.
Original entry on oeis.org
1, 4, 3, 16, 25, 12, 7, 32, 9, 100, 11, 48, 13, 28, 75, 64, 17, 36, 19, 400, 21, 44, 23, 96, 625, 52, 27, 112, 29, 300, 31, 128, 33, 68, 175, 144, 37, 76, 39, 800, 41, 84, 43, 176, 225, 92, 47, 192, 49, 2500, 51, 208, 53, 108, 275, 224, 57, 116, 59, 1200, 61, 124, 63, 256
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e5 = IntegerExponent[n, 5]}, 2^Min[e2, 2] * 5^e5 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=5}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
A370567
Size of the group Q_7*/(Q_7*)^n, where Q_7 is the field of 7-adic numbers.
Original entry on oeis.org
1, 4, 9, 8, 5, 36, 49, 16, 27, 20, 11, 72, 13, 196, 45, 32, 17, 108, 19, 40, 441, 44, 23, 144, 25, 52, 81, 392, 29, 180, 31, 64, 99, 68, 245, 216, 37, 76, 117, 80, 41, 1764, 43, 88, 135, 92, 47, 288, 2401, 100, 153, 104, 53, 324, 55, 784, 171, 116, 59, 360, 61, 124, 1323, 128
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3], e7 = IntegerExponent[n, 7]}, 2^Min[e2, 1] * 3^Min[e3, 1] * 7^e7 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=7}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
Showing 1-4 of 4 results.
Comments