A370050
Square array read by ascending antidiagonals: T(n,k) is the size of the group Z_p*/(Z_p*)^k, where p = prime(n), and Z_p is the ring of p-adic integers.
Original entry on oeis.org
1, 1, 4, 1, 2, 1, 1, 2, 3, 8, 1, 2, 1, 2, 1, 1, 2, 3, 4, 1, 4, 1, 2, 1, 2, 5, 6, 1, 1, 2, 3, 2, 1, 2, 1, 16, 1, 2, 1, 4, 5, 6, 1, 2, 1, 1, 2, 3, 4, 1, 2, 7, 4, 9, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 10, 1, 8, 1, 2, 3, 4, 1, 6, 1, 4, 1, 2, 1, 6, 1
Offset: 1
Table reads
1, 4, 1, 8, 1, 4, 1, 16, 1, 4
1, 2, 3, 2, 1, 6, 1, 2, 9, 2
1, 2, 1, 4, 5, 2, 1, 4, 1, 10
1, 2, 3, 2, 1, 6, 7, 2, 3, 2
1, 2, 1, 2, 5, 2, 1, 2, 1, 10
1, 2, 3, 4, 1, 6, 1, 4, 3, 2
1, 2, 1, 4, 1, 2, 1, 8, 1, 2
1, 2, 3, 2, 1, 6, 1, 2, 9, 2
1, 2, 1, 2, 1, 2, 1, 2, 1, 2
1, 2, 1, 4, 1, 2, 7, 4, 1, 2
For p = prime(1) = 2 and k = 2, we have Z_p*/(Z_p*)^k = Z_2*/(1+8Z_2) = (Z/8Z)*/(1+8Z) = C_2 X C_2, so T(1,2) = 4.
For p = prime(2) = 3 and k = 3, we have Z_p*/(Z_p*)^k = Z_3*/((1+9Z_3) U (8+9Z_3)) = (Z/9Z)*/((1+9Z) U (8+9Z)) = C_3, so T(2,3) = 3.
-
T(n,k) = my(p = prime(n), e = valuation(k,p)); p^e*gcd(p-1,k/p^e) * if(p==2 && e>=1, 2, 1)
A370565
Size of the group Q_3*/(Q_3*)^n, where Q_3 is the field of 3-adic numbers.
Original entry on oeis.org
1, 4, 9, 8, 5, 36, 7, 16, 81, 20, 11, 72, 13, 28, 45, 32, 17, 324, 19, 40, 63, 44, 23, 144, 25, 52, 729, 56, 29, 180, 31, 64, 99, 68, 35, 648, 37, 76, 117, 80, 41, 252, 43, 88, 405, 92, 47, 288, 49, 100, 153, 104, 53, 2916, 55, 112, 171, 116, 59, 360, 61, 124, 567, 128
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3]}, 2^Min[e2, 1] * 3^e3 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=3}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
A370566
Size of the group Q_5*/(Q_5*)^n, where Q_5 is the field of 5-adic numbers.
Original entry on oeis.org
1, 4, 3, 16, 25, 12, 7, 32, 9, 100, 11, 48, 13, 28, 75, 64, 17, 36, 19, 400, 21, 44, 23, 96, 625, 52, 27, 112, 29, 300, 31, 128, 33, 68, 175, 144, 37, 76, 39, 800, 41, 84, 43, 176, 225, 92, 47, 192, 49, 2500, 51, 208, 53, 108, 275, 224, 57, 116, 59, 1200, 61, 124, 63, 256
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e5 = IntegerExponent[n, 5]}, 2^Min[e2, 2] * 5^e5 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=5}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
A370567
Size of the group Q_7*/(Q_7*)^n, where Q_7 is the field of 7-adic numbers.
Original entry on oeis.org
1, 4, 9, 8, 5, 36, 49, 16, 27, 20, 11, 72, 13, 196, 45, 32, 17, 108, 19, 40, 441, 44, 23, 144, 25, 52, 81, 392, 29, 180, 31, 64, 99, 68, 245, 216, 37, 76, 117, 80, 41, 1764, 43, 88, 135, 92, 47, 288, 2401, 100, 153, 104, 53, 324, 55, 784, 171, 116, 59, 360, 61, 124, 1323, 128
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3], e7 = IntegerExponent[n, 7]}, 2^Min[e2, 1] * 3^Min[e3, 1] * 7^e7 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=7}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
A370564
Size of the group Q_2*/(Q_2*)^n, where Q_2 is the field of 2-adic numbers.
Original entry on oeis.org
1, 8, 3, 32, 5, 24, 7, 128, 9, 40, 11, 96, 13, 56, 15, 512, 17, 72, 19, 160, 21, 88, 23, 384, 25, 104, 27, 224, 29, 120, 31, 2048, 33, 136, 35, 288, 37, 152, 39, 640, 41, 168, 43, 352, 45, 184, 47, 1536, 49, 200, 51, 416, 53, 216, 55, 896, 57, 232, 59, 480, 61, 248, 63, 8192
Offset: 1
-
a[n_] := Module[{e = IntegerExponent[n, 2]}, 2^If[e == 0, 0, e + 1] * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n) = my(e = valuation(n, 2)); n * 2^e * if(e>=1, 2, 1)
Showing 1-5 of 5 results.
Comments