A370050
Square array read by ascending antidiagonals: T(n,k) is the size of the group Z_p*/(Z_p*)^k, where p = prime(n), and Z_p is the ring of p-adic integers.
Original entry on oeis.org
1, 1, 4, 1, 2, 1, 1, 2, 3, 8, 1, 2, 1, 2, 1, 1, 2, 3, 4, 1, 4, 1, 2, 1, 2, 5, 6, 1, 1, 2, 3, 2, 1, 2, 1, 16, 1, 2, 1, 4, 5, 6, 1, 2, 1, 1, 2, 3, 4, 1, 2, 7, 4, 9, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 10, 1, 8, 1, 2, 3, 4, 1, 6, 1, 4, 1, 2, 1, 6, 1
Offset: 1
Table reads
1, 4, 1, 8, 1, 4, 1, 16, 1, 4
1, 2, 3, 2, 1, 6, 1, 2, 9, 2
1, 2, 1, 4, 5, 2, 1, 4, 1, 10
1, 2, 3, 2, 1, 6, 7, 2, 3, 2
1, 2, 1, 2, 5, 2, 1, 2, 1, 10
1, 2, 3, 4, 1, 6, 1, 4, 3, 2
1, 2, 1, 4, 1, 2, 1, 8, 1, 2
1, 2, 3, 2, 1, 6, 1, 2, 9, 2
1, 2, 1, 2, 1, 2, 1, 2, 1, 2
1, 2, 1, 4, 1, 2, 7, 4, 1, 2
For p = prime(1) = 2 and k = 2, we have Z_p*/(Z_p*)^k = Z_2*/(1+8Z_2) = (Z/8Z)*/(1+8Z) = C_2 X C_2, so T(1,2) = 4.
For p = prime(2) = 3 and k = 3, we have Z_p*/(Z_p*)^k = Z_3*/((1+9Z_3) U (8+9Z_3)) = (Z/9Z)*/((1+9Z) U (8+9Z)) = C_3, so T(2,3) = 3.
-
T(n,k) = my(p = prime(n), e = valuation(k,p)); p^e*gcd(p-1,k/p^e) * if(p==2 && e>=1, 2, 1)
A370567
Size of the group Q_7*/(Q_7*)^n, where Q_7 is the field of 7-adic numbers.
Original entry on oeis.org
1, 4, 9, 8, 5, 36, 49, 16, 27, 20, 11, 72, 13, 196, 45, 32, 17, 108, 19, 40, 441, 44, 23, 144, 25, 52, 81, 392, 29, 180, 31, 64, 99, 68, 245, 216, 37, 76, 117, 80, 41, 1764, 43, 88, 135, 92, 47, 288, 2401, 100, 153, 104, 53, 324, 55, 784, 171, 116, 59, 360, 61, 124, 1323, 128
Offset: 1
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3], e7 = IntegerExponent[n, 7]}, 2^Min[e2, 1] * 3^Min[e3, 1] * 7^e7 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n, {p=7}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
A370180
Size of the group Z_3*/(Z_3*)^n, where Z_3 is the ring of 3-adic integers.
Original entry on oeis.org
1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 3, 2, 1, 6, 1, 2, 27, 2, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 54, 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 3, 2, 1, 6, 1, 2, 81, 2, 1, 6, 1, 2, 3, 2, 1, 18
Offset: 1
We have Z_3*/(Z_3*)^3 = Z_3* / ((1+9Z_3) U (8+9Z_3)) = (Z/9Z)*/((1+9Z) U (8+9Z)) = C_3, so a(3) = 3.
We have Z_3*/(Z_3*)^6 = Z_3* / (1+9Z_3) = (Z/9Z)*/(1+9Z) = C_6, so a(6) = 6.
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3]}, 2^If[e2 == 0, 0, 1] * 3^e3]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n,{p=3}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
A370181
Size of the group Z_5*/(Z_5*)^n, where Z_5 is the ring of 5-adic integers.
Original entry on oeis.org
1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 25, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 50, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 25, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10
Offset: 1
We have Z_5*/(Z_5*)^5 = Z_5* / ((1+25Z_5) U (7+25Z_5) U (18+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (7+25Z) U (18+25Z) U (24+25Z)) = C_5, so a(5) = 5.
We have Z_5*/(Z_5*)^10 = Z_5* / ((1+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (25+25Z)) = C_10, so a(10) = 10.
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e5 = IntegerExponent[n, 5]}, 2^Min[e2, 2] * 5^e5]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n,{p=5}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
Showing 1-4 of 4 results.
Comments