A370050
Square array read by ascending antidiagonals: T(n,k) is the size of the group Z_p*/(Z_p*)^k, where p = prime(n), and Z_p is the ring of p-adic integers.
Original entry on oeis.org
1, 1, 4, 1, 2, 1, 1, 2, 3, 8, 1, 2, 1, 2, 1, 1, 2, 3, 4, 1, 4, 1, 2, 1, 2, 5, 6, 1, 1, 2, 3, 2, 1, 2, 1, 16, 1, 2, 1, 4, 5, 6, 1, 2, 1, 1, 2, 3, 4, 1, 2, 7, 4, 9, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 10, 1, 8, 1, 2, 3, 4, 1, 6, 1, 4, 1, 2, 1, 6, 1
Offset: 1
Table reads
1, 4, 1, 8, 1, 4, 1, 16, 1, 4
1, 2, 3, 2, 1, 6, 1, 2, 9, 2
1, 2, 1, 4, 5, 2, 1, 4, 1, 10
1, 2, 3, 2, 1, 6, 7, 2, 3, 2
1, 2, 1, 2, 5, 2, 1, 2, 1, 10
1, 2, 3, 4, 1, 6, 1, 4, 3, 2
1, 2, 1, 4, 1, 2, 1, 8, 1, 2
1, 2, 3, 2, 1, 6, 1, 2, 9, 2
1, 2, 1, 2, 1, 2, 1, 2, 1, 2
1, 2, 1, 4, 1, 2, 7, 4, 1, 2
For p = prime(1) = 2 and k = 2, we have Z_p*/(Z_p*)^k = Z_2*/(1+8Z_2) = (Z/8Z)*/(1+8Z) = C_2 X C_2, so T(1,2) = 4.
For p = prime(2) = 3 and k = 3, we have Z_p*/(Z_p*)^k = Z_3*/((1+9Z_3) U (8+9Z_3)) = (Z/9Z)*/((1+9Z) U (8+9Z)) = C_3, so T(2,3) = 3.
-
T(n,k) = my(p = prime(n), e = valuation(k,p)); p^e*gcd(p-1,k/p^e) * if(p==2 && e>=1, 2, 1)
A370180
Size of the group Z_3*/(Z_3*)^n, where Z_3 is the ring of 3-adic integers.
Original entry on oeis.org
1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 3, 2, 1, 6, 1, 2, 27, 2, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 54, 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 3, 2, 1, 6, 1, 2, 81, 2, 1, 6, 1, 2, 3, 2, 1, 18
Offset: 1
We have Z_3*/(Z_3*)^3 = Z_3* / ((1+9Z_3) U (8+9Z_3)) = (Z/9Z)*/((1+9Z) U (8+9Z)) = C_3, so a(3) = 3.
We have Z_3*/(Z_3*)^6 = Z_3* / (1+9Z_3) = (Z/9Z)*/(1+9Z) = C_6, so a(6) = 6.
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3]}, 2^If[e2 == 0, 0, 1] * 3^e3]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n,{p=3}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
A370181
Size of the group Z_5*/(Z_5*)^n, where Z_5 is the ring of 5-adic integers.
Original entry on oeis.org
1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 25, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 50, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 25, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10
Offset: 1
We have Z_5*/(Z_5*)^5 = Z_5* / ((1+25Z_5) U (7+25Z_5) U (18+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (7+25Z) U (18+25Z) U (24+25Z)) = C_5, so a(5) = 5.
We have Z_5*/(Z_5*)^10 = Z_5* / ((1+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (25+25Z)) = C_10, so a(10) = 10.
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e5 = IntegerExponent[n, 5]}, 2^Min[e2, 2] * 5^e5]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n,{p=5}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
A370182
Size of the group Z_7*/(Z_7*)^n, where Z_7 is the ring of 7-adic integers.
Original entry on oeis.org
1, 2, 3, 2, 1, 6, 7, 2, 3, 2, 1, 6, 1, 14, 3, 2, 1, 6, 1, 2, 21, 2, 1, 6, 1, 2, 3, 14, 1, 6, 1, 2, 3, 2, 7, 6, 1, 2, 3, 2, 1, 42, 1, 2, 3, 2, 1, 6, 49, 2, 3, 2, 1, 6, 1, 14, 3, 2, 1, 6, 1, 2, 21, 2, 1, 6, 1, 2, 3, 14, 1, 6, 1, 2, 3, 2, 7, 6, 1, 2, 3, 2, 1, 42, 1, 2, 3, 2, 1, 6
Offset: 1
We have Z_7*/(Z_7*)^7 = Z_7* / ((1+49Z_7) U (18+49Z_7) U (19+49Z_7) U (30+49Z_7) U (31+49Z_7) U (48+49Z_7)) = (Z/49Z)*/((1+49Z) U (18+49Z) U (19+49Z) U (30+49Z) U (31+49Z) U (48+49Z)) = C_7, so a(7) = 7.
We have Z_7*/(Z_7*)^14 = Z_7* / ((1+49Z_7) U (18+49Z_7) U (30+49Z_7)) = (Z/49Z)*/((1+49Z) U (18+49Z) U (30+49Z)) = C_14, so a(14) = 14.
-
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3], e7 = IntegerExponent[n, 7]}, 2^Min[e2, 1] * 3^Min[e3, 1] * 7^e7]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n,{p=7}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
A370564
Size of the group Q_2*/(Q_2*)^n, where Q_2 is the field of 2-adic numbers.
Original entry on oeis.org
1, 8, 3, 32, 5, 24, 7, 128, 9, 40, 11, 96, 13, 56, 15, 512, 17, 72, 19, 160, 21, 88, 23, 384, 25, 104, 27, 224, 29, 120, 31, 2048, 33, 136, 35, 288, 37, 152, 39, 640, 41, 168, 43, 352, 45, 184, 47, 1536, 49, 200, 51, 416, 53, 216, 55, 896, 57, 232, 59, 480, 61, 248, 63, 8192
Offset: 1
-
a[n_] := Module[{e = IntegerExponent[n, 2]}, 2^If[e == 0, 0, e + 1] * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
a(n) = my(e = valuation(n, 2)); n * 2^e * if(e>=1, 2, 1)
A074723
Largest power of 2 dividing F(3n) where F(k) is the k-th Fibonacci number.
Original entry on oeis.org
2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 64, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 128, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 64, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 256, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 64, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2
Offset: 1
-
seq(`if`(n::odd,2,2^(2+padic:-ordp(n,2))),n=1..100); # Robert Israel, Oct 10 2016
-
Table[2^(Length@ NestWhileList[#/2 &, Fibonacci[3 n], IntegerQ] - 2), {n, 120}] (* Michael De Vlieger, Oct 10 2016 *)
a[n_] := If[EvenQ[n], 2^(FactorInteger[n][[1]][[2]] + 2), 2]; Array[a, 90] (* Frank M Jackson, Jul 28 2018 *)
-
a(n) = 2^valuation(fibonacci(3*n), 2); \\ Michel Marcus, Oct 10 2016
Showing 1-6 of 6 results.
Comments