A370062 Array read by antidiagonals: T(n,k) is the number of achiral dissections of a polygon into n k-gons by nonintersecting diagonals, n >= 1, k >= 3.
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 4, 7, 5, 1, 1, 3, 5, 9, 12, 5, 1, 1, 4, 6, 18, 22, 30, 14, 1, 1, 4, 7, 21, 35, 52, 55, 14, 1, 1, 5, 8, 34, 51, 136, 140, 143, 42, 1, 1, 5, 9, 38, 70, 190, 285, 340, 273, 42, 1, 1, 6, 10, 55, 92, 368, 506, 1155, 969, 728, 132
Offset: 1
Examples
Array begins: ============================================= n\k| 3 4 5 6 7 8 9 10 ... ---+----------------------------------------- 1 | 1 1 1 1 1 1 1 1 ... 2 | 1 1 1 1 1 1 1 1 ... 3 | 1 2 2 3 3 4 4 5 ... 4 | 2 3 4 5 6 7 8 9 ... 5 | 2 7 9 18 21 34 38 55 ... 6 | 5 12 22 35 51 70 92 117 ... 7 | 5 30 52 136 190 368 468 775 ... 8 | 14 55 140 285 506 819 1240 1785 ... 9 | 14 143 340 1155 1950 4495 6545 12350 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
- Wikipedia, Fuss-Catalan number
Crossrefs
Programs
-
PARI
\\ here u is Fuss-Catalan sequence with p = k-1. u(n, k, r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)} T(n, k) = {(if(n%2, u((n-1)/2, k, k\2), if(k%2, u(n/2-1, k, k-1), u(n/2, k, 1))))} for(n=1, 9, for(k=3, 10, print1(T(n, k), ", ")); print);
Comments