cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370065 Triangle read by rows: T(n,k) is the number of simple graphs on n labeled nodes with k articulation vertices, (0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 5, 3, 0, 0, 24, 28, 12, 0, 0, 334, 390, 240, 60, 0, 0, 13262, 10776, 6090, 2280, 360, 0, 0, 1106862, 615860, 255570, 92820, 23520, 2520, 0, 0, 175376048, 66625504, 19275424, 5446560, 1429680, 262080, 20160, 0, 0, 52257938968, 13210716600, 2592577512, 520122456, 112145040, 22649760, 3144960, 181440, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Feb 25 2024

Keywords

Examples

			Triangle begins:
        1;
        1,      0;
        2,      0,      0;
        5,      3,      0,     0;
       24,     28,     12,     0,     0;
      334,    390,    240,    60,     0,    0;
    13262,  10776,   6090,  2280,   360,    0, 0;
  1106862, 615860, 255570, 92820, 23520, 2520, 0, 0;
  ...
		

Crossrefs

Row sums are A006125.
Column k=0 is A370066.
Cf. A188588, A370064 (connected).

Programs

  • PARI
    \\ Needs G, J defined in A370064.
    T(n)={my(v=Vec( ((y-1)*x + serreverse(x/((1-y) + y*exp(G(n)))))/y ), w=Vec(serlaplace(exp(sum(k=1, n, Polrev(J(v[k],k),y)*x^k, O(x*x^n)) )))); vector(#w, n, Vecrev(w[n],n))}
    { my(A=T(8)); for(i=1, #A, print(A[i])) }

Formula

Exponential transform of A370064.
T(n+2, n) = A188588(n + 1).