A370075 Iterated partial sums of Euler totient function (A000010). Square array read by descending antidiagonals.
1, 1, 1, 2, 2, 1, 2, 4, 3, 1, 4, 6, 7, 4, 1, 2, 10, 13, 11, 5, 1, 6, 12, 23, 24, 16, 6, 1, 4, 18, 35, 47, 40, 22, 7, 1, 6, 22, 53, 82, 87, 62, 29, 8, 1, 4, 28, 75, 135, 169, 149, 91, 37, 9, 1, 10, 32, 103, 210, 304, 318, 240, 128, 46, 10, 1
Offset: 1
Examples
First 10 rows and columns: n\k | 1 2 3 4 5 6 7 8 9 10 ... ----+--------------------------------------------------------- 1 | 1 1 2 2 4 2 6 4 6 4 ... = A000010 2 | 1 2 4 6 10 12 18 22 28 32 ... = A002088 3 | 1 3 7 13 23 35 53 75 103 135 ... = A103116 4 | 1 4 11 24 47 82 135 210 313 448 ... 5 | 1 5 16 40 87 169 304 514 827 1275 ... 6 | 1 6 22 62 149 318 622 1136 1963 3238 ... 7 | 1 7 29 91 240 558 1180 2316 4279 7517 ... 8 | 1 8 37 128 368 926 2106 4422 8701 16218 ... 9 | 1 9 46 174 542 1468 3574 7996 16697 32915 ... 10 | 1 10 56 230 772 2240 5814 13810 30507 63422 ... ...
Crossrefs
Programs
-
MATLAB
function out = a(n) Z = zeros(n); A = arrayfun(@eulerPhi,[1:n]); Z(1,1:n) = A; for i = 2 : n A = cumsum(A); Z(i,1:n) = A; end [nr,nc] = size(Z); [R,C] = ndgrid(1:nr,1:nc); M = [reshape(R+C,[],1),R(:)]; [~,ind] = sortrows(M); Z = Z(ind)'; out = Z(1,n);
-
Mathematica
T[1, k_] := EulerPhi[k]; T[n_, k_] := T[n, k] = Sum[T[n - 1, i], {i, 1, k}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Feb 09 2024 *)
Formula
T(1,k) = A000010(k) for k >= 1; T(n,k) = Sum_{i=1..k} T(n-1,i) for n > 1, k >= 1.