A370093 Decimal expansion of Lichtman constant f(N*(2)).
8, 9, 0, 9, 2, 5, 4, 7, 9, 4, 7, 6, 3, 1, 8, 3, 3, 2, 1, 3, 7, 2, 6, 2, 6, 2, 1, 9, 9, 5, 9, 8, 8, 2, 9, 3, 8, 9, 7, 8, 1, 8, 1, 3, 8, 1, 6, 5, 2, 7, 6, 3, 8, 9, 8, 3, 2, 9, 0, 7, 5, 6, 6, 9, 9, 8, 9, 1, 3, 4, 4, 1, 0, 6, 1, 4, 5, 0, 5, 2, 0, 7, 3, 6, 6, 4, 9, 7, 3, 3, 5, 9, 2, 7, 6, 2, 3, 2, 7, 5, 0, 3, 3, 3, 8, 3
Offset: 0
Examples
0.890925479476318332...
Links
- Bill Allombert, Results of pari computation of Lichtman constants f(N*(k)) with precision 500 decimals for k=1..20, email 20.06.2023.
- Jared Duker Lichtman, Almost primes and the Banks-Martin conjecture, arXiv:1909.00804 [math.NT], 2019 (Figure 2 right column).
Programs
-
PARI
pz(x)= sum(n=1,max(2,bitprecision(x)/x),my(a=moebius(n));if(a!=0,a*log(zeta(n*x))/n)); Lichtman(n)=intnum(s=1,[oo,log(2)],exp(-sum(i=1,n,pz(i*s)*x^i/i)+O(x^(n+1)))-1) Lichtman(20) \\ Bill Allombert, Feb 14 2014 [via Artur Jasinski]
Comments