A370134 Triangle read by rows: T(n,k) = A002110(n) + A002110(k), 1 <= k <= n; sums of two primorials > 1, not necessarily distinct.
4, 8, 12, 32, 36, 60, 212, 216, 240, 420, 2312, 2316, 2340, 2520, 4620, 30032, 30036, 30060, 30240, 32340, 60060, 510512, 510516, 510540, 510720, 512820, 540540, 1021020, 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380, 223092872, 223092876, 223092900, 223093080, 223095180, 223122900, 223603380
Offset: 1
Examples
Triangle begins as: 4; 8, 12; 32, 36, 60; 212, 216, 240, 420; 2312, 2316, 2340, 2520, 4620; 30032, 30036, 30060, 30240, 32340, 60060; 510512, 510516, 510540, 510720, 512820, 540540, 1021020; 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380;
Links
Crossrefs
Programs
-
Mathematica
nn = 20; MapIndexed[Set[P[First[#2] - 1], #1] &, FoldList[Times, 1, Prime@ Range[nn + 1]]]; Table[(P[n] + P[k]), {n, nn}, {k, n}] (* Michael De Vlieger, Mar 08 2024 *)
-
PARI
A002110(n) = prod(i=1,n,prime(i)); A370134(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2); (A002110(1+c) + A002110(1+n - binomial(c + 1, 2))); };
Formula
For n >= 1, A276150(a(n)) = 2.