A370135 Triangle read by rows: T(n,k) = (A002110(n) + A002110(k)) / A002110(k), 1 <= k <= n.
2, 4, 2, 16, 6, 2, 106, 36, 8, 2, 1156, 386, 78, 12, 2, 15016, 5006, 1002, 144, 14, 2, 255256, 85086, 17018, 2432, 222, 18, 2, 4849846, 1616616, 323324, 46190, 4200, 324, 20, 2, 111546436, 37182146, 7436430, 1062348, 96578, 7430, 438, 24, 2, 3234846616, 1078282206, 215656442, 30808064, 2800734, 215442, 12674, 668, 30, 2
Offset: 1
Examples
Triangle begins as: 2; 4, 2; 16, 6, 2; 106, 36, 8, 2; 1156, 386, 78, 12, 2; 15016, 5006, 1002, 144, 14, 2; 255256, 85086, 17018, 2432, 222, 18, 2; 4849846, 1616616, 323324, 46190, 4200, 324, 20, 2; 111546436, 37182146, 7436430, 1062348, 96578, 7430, 438, 24, 2;
Links
Programs
-
Mathematica
nn = 20; MapIndexed[Set[P[First[#2] - 1], #1] &, FoldList[Times, 1, Prime@ Range[nn + 1]]]; Table[(P[n] + P[k])/P[k], {n, nn}, {k, n}] (* Michael De Vlieger, Mar 08 2024 *)
-
PARI
A002110(n) = prod(i=1,n,prime(i)); A370135(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2, x=A002110(1+n - binomial(c + 1, 2))); ((A002110(1+c)+x)/x); };