A370173 Riordan array (1-x-x^2, x*(1+x)).
1, -1, 1, -1, 0, 1, 0, -2, 1, 1, 0, -1, -2, 2, 1, 0, 0, -3, -1, 3, 1, 0, 0, -1, -5, 1, 4, 1, 0, 0, 0, -4, -6, 4, 5, 1, 0, 0, 0, -1, -9, -5, 8, 6, 1, 0, 0, 0, 0, -5, -15, -1, 13, 7, 1, 0, 0, 0, 0, -1, -14, -20, 7, 19, 8, 1, 0, 0, 0, 0, 0, -6, -29, -21, 20, 26, 9, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; -1, 1; -1, 0, 1; 0, -2, 1, 1; 0, -1, -2, 2, 1; 0, 0, -3, -1, 3, 1; ...
Crossrefs
Programs
-
Python
from functools import cache @cache def T(n, k): if k > n: return 0 if n == 0: return 1 if k == 0: return -1 if n == 1 or n == 2 else 0 return T(n-1, k-1) + T(n-2, k-1) for n in range(9): print([T(n, k) for k in range(n+1)]) # Peter Luschny, Feb 28 2024
Formula
T(n,k) = T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = -1, T(n,0) = 0 for n>2, T(n,k) = 0 if k>n.
Comments