A370182 Size of the group Z_7*/(Z_7*)^n, where Z_7 is the ring of 7-adic integers.
1, 2, 3, 2, 1, 6, 7, 2, 3, 2, 1, 6, 1, 14, 3, 2, 1, 6, 1, 2, 21, 2, 1, 6, 1, 2, 3, 14, 1, 6, 1, 2, 3, 2, 7, 6, 1, 2, 3, 2, 1, 42, 1, 2, 3, 2, 1, 6, 49, 2, 3, 2, 1, 6, 1, 14, 3, 2, 1, 6, 1, 2, 21, 2, 1, 6, 1, 2, 3, 14, 1, 6, 1, 2, 3, 2, 7, 6, 1, 2, 3, 2, 1, 42, 1, 2, 3, 2, 1, 6
Offset: 1
Examples
We have Z_7*/(Z_7*)^7 = Z_7* / ((1+49Z_7) U (18+49Z_7) U (19+49Z_7) U (30+49Z_7) U (31+49Z_7) U (48+49Z_7)) = (Z/49Z)*/((1+49Z) U (18+49Z) U (19+49Z) U (30+49Z) U (31+49Z) U (48+49Z)) = C_7, so a(7) = 7. We have Z_7*/(Z_7*)^14 = Z_7* / ((1+49Z_7) U (18+49Z_7) U (30+49Z_7)) = (Z/49Z)*/((1+49Z) U (18+49Z) U (30+49Z)) = C_14, so a(14) = 14.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3], e7 = IntegerExponent[n, 7]}, 2^Min[e2, 1] * 3^Min[e3, 1] * 7^e7]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
PARI
a(n,{p=7}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
Formula
Multiplicative with a(7^e) = 7^e, a(2^e) = 2, a(3^e) = 3 and a(p^e) = 1 for primes p != 2, 3, 7.
From Amiram Eldar, May 20 2024: (Start)
Dirichlet g.f.: (1 + 1/2^s) * (1 + 2/3^s) * ((1 - 1/7^s)/(1 - 1/7^(s-1))) * zeta(s).
Sum_{k=1..n} a(k) ~ (15*n/(7*log(7))) * (log(n) + gamma - 1 + 2*log(7)/3 - 2*log(3)/5 - log(2)/3), where gamma is Euler's constant (A001620). (End)
Comments