cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370206 Numbers j whose symmetric representation of sigma(j) consists of two copies of unimodal width pattern 121 separated by 0.

Original entry on oeis.org

78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 348, 354, 366, 372, 402, 426, 438, 444, 474, 492, 498, 516, 534, 564, 582, 606, 618, 636, 642, 654, 678, 708, 732, 762, 786, 804, 820, 822, 834, 852, 860, 876, 894, 906, 940, 942, 948, 978, 996, 1002, 1038, 1060, 1068, 1074
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 11 2024

Keywords

Comments

Each term has 4 odd divisors and has the form 2^k * p * q, k > 0, p and q prime, 2 < p < 2^(k+1) < 2^(k+1) * p < q. The inequalities ensure that the four 1's in row a(n) of triangle in A237048 are in positions 1, p, 2^(k+1), and 2^(k+1) * p <= floor( (sqrt(8*a(n)+1) - 1)/2 ) < q and establish width pattern 1210 in SRS(a(n)) up to the diagonal. Also since p < 2^(k+1), numbers of the form 2^k * p^3 force p^2 < 2^(k+1) * p which creates a width pattern of the form 1212121.
When a(n) satisfies q = 2^(k+1) * p + 1 it is the smallest number with prime factor p whose two parts of SRS(a(n)) meet at the diagonal since in this case 2^(k+1) * p = floor( (sqrt(8*a(n)+1) - 1)/2 ). The first 4 numbers with p = 3 are 2* 3 * 13 = 78, 2^4 * 3 * 97 = 4656, 2^5 * 3 * 193 = 18528 and 2^7 * 3 * 769 = 295296. The smallest number with prime factor p = 47 has 355 digits.
Conjecture: The subsequence of numbers m whose two parts of SRS(m) meet at the diagonal is infinite.

Examples

			a(1) = 78 = 2 * 3 * 13 = A262259(3) and SRS(78) consists of 2 unimodal parts of width pattern 121 that meet at diagonal position (54, 54).
a(38) = 4 * 5 * 41 = 820 = A262259(6)  is the smallest number in the sequence divisible by 5 and the two parts of SRS(a(38)) meet at diagonal position (570, 570).
		

Crossrefs

Programs

  • Mathematica
    (* function based on conditions for the odd divisors - fast computation *)
    a370206Q[n_] := Module[{f=FactorInteger[n], d=Divisors[NestWhile[#/2&, n, EvenQ[#]&]]}, Length[f]==3&&f[[1, 1]]==2&&Length[d]==4&&f[[2, 1]]<2^(f[[1, 2]]+1)&&2^(f[[1, 2]]+1)*f[[2, 1]]A367377 - slow computation *)
    a370206[m_, n_] :=  Select[Range[m, n], widthPattern[#]=={1, 2, 1, 0, 1, 2, 1}&]
    a370206[1,1074]