A370220 Irregular triangle T(n,k) read by rows: row n lists the positions of left parentheses for the properly nested string of parentheses encoded by A063171(n).
1, 1, 3, 1, 2, 1, 3, 5, 1, 3, 4, 1, 2, 5, 1, 2, 4, 1, 2, 3, 1, 3, 5, 7, 1, 3, 5, 6, 1, 3, 4, 7, 1, 3, 4, 6, 1, 3, 4, 5, 1, 2, 5, 7, 1, 2, 5, 6, 1, 2, 4, 7, 1, 2, 4, 6, 1, 2, 4, 5, 1, 2, 3, 7, 1, 2, 3, 6, 1, 2, 3, 5, 1, 2, 3, 4, 1, 3, 5, 7, 9, 1, 3, 5, 7, 8, 1, 3, 5, 6, 9
Offset: 1
Examples
The following table lists z_k values for properly nested strings having lengths up to 8, along with d_k, p_k and c_k values from related combinatorial objects (see related sequences for more information). Cf. Knuth (2011), p. 442, Table 1. . | Properly | | A370219 | | A370221 | A370222 | Nested | A063171 | d d d d | z z z z | p p p p | c c c c n | String | (n) | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 ----+----------+----------+---------+---------+---------+--------- 1 | () | 10 | 1 | 1 | 1 | 0 2 | ()() | 1010 | 1 1 | 1 3 | 1 2 | 0 0 3 | (()) | 1100 | 0 2 | 1 2 | 2 1 | 0 1 4 | ()()() | 101010 | 1 1 1 | 1 3 5 | 1 2 3 | 0 0 0 5 | ()(()) | 101100 | 1 0 2 | 1 3 4 | 1 3 2 | 0 0 1 6 | (())() | 110010 | 0 2 1 | 1 2 5 | 2 1 3 | 0 1 0 7 | (()()) | 110100 | 0 1 2 | 1 2 4 | 2 3 1 | 0 1 1 8 | ((())) | 111000 | 0 0 3 | 1 2 3 | 3 2 1 | 0 1 2 9 | ()()()() | 10101010 | 1 1 1 1 | 1 3 5 7 | 1 2 3 4 | 0 0 0 0 10 | ()()(()) | 10101100 | 1 1 0 2 | 1 3 5 6 | 1 2 4 3 | 0 0 0 1 11 | ()(())() | 10110010 | 1 0 2 1 | 1 3 4 7 | 1 3 2 4 | 0 0 1 0 12 | ()(()()) | 10110100 | 1 0 1 2 | 1 3 4 6 | 1 3 4 2 | 0 0 1 1 13 | ()((())) | 10111000 | 1 0 0 3 | 1 3 4 5 | 1 4 3 2 | 0 0 1 2 14 | (())()() | 11001010 | 0 2 1 1 | 1 2 5 7 | 2 1 3 4 | 0 1 0 0 15 | (())(()) | 11001100 | 0 2 0 2 | 1 2 5 6 | 2 1 4 3 | 0 1 0 1 16 | (()())() | 11010010 | 0 1 2 1 | 1 2 4 7 | 2 3 1 4 | 0 1 1 0 17 | (()()()) | 11010100 | 0 1 1 2 | 1 2 4 6 | 2 3 4 1 | 0 1 1 1 18 | (()(())) | 11011000 | 0 1 0 3 | 1 2 4 5 | 2 4 3 1 | 0 1 1 2 19 | ((()))() | 11100010 | 0 0 3 1 | 1 2 3 7 | 3 2 1 4 | 0 1 2 0 20 | ((())()) | 11100100 | 0 0 2 2 | 1 2 3 6 | 3 2 4 1 | 0 1 2 1 21 | ((()())) | 11101000 | 0 0 1 3 | 1 2 3 5 | 3 4 2 1 | 0 1 2 2 22 | (((()))) | 11110000 | 0 0 0 4 | 1 2 3 4 | 4 3 2 1 | 0 1 2 3
References
- Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, pp. 440-444. See also exercise 2, p. 471 and p. 781.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..15521 (rows 1..2055 of the triangle, flattened).
Crossrefs
Programs
-
Mathematica
zlist[m_] := With[{r = 2*Range[2, m]}, Reverse[Map[Join[{1}, #] &, Select[Subsets[Range[2, 2*m-1], {m-1}], Min[r-#] > 0 &]]]]; Array[Delete[zlist[#], 0] &, 5] (* 2nd program: uses Algorithm Z from Knuth's TAOCP section 7.2.1.6, exercise 2 *) zlist[m_] := Block[{z = 2*Range[m] - 1, j}, Reap[ While[True, Sow[z]; If[z[[m-1]] < z[[m]] - 1, z[[m]]--, j = m - 1; z[[m]] = 2*m - 1; While[j > 1 && z[[j-1]] == z[[j]] - 1, z[[j]] = 2*j - 1; j--]; If[j == 1,Break[]]; z[[j]]--] ]][[2]][[1]]]; Join[{{1}}, Array[Delete[zlist[#], 0] &, 4, 2]]
Comments