A369208 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^2) ).
1, 2, 8, 38, 200, 1122, 6576, 39790, 246672, 1558658, 10001592, 64997814, 426922392, 2829624514, 18901301984, 127115260894, 859978039840, 5848754717314, 39964745880552, 274231943135686, 1888891689752680, 13055393137141282, 90517646431869328
Offset: 0
Keywords
Links
Programs
-
PARI
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^2))/x)
-
PARI
a(n, s=2, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
Formula
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(3*n-2*k+1,n-2*k).
a(n) = (1/(n+1)) *[x^n] ( 1/(1-x)^2 * (1+x^2) )^(n+1). - Seiichi Manyama, Feb 14 2024