cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370259 a(n) = (T(n,n+1) - 1)/n^3 for n >= 1, where T(n,x) is the n-th Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 2, 9, 75, 961, 16900, 380689, 10498005, 343323841, 13007560326, 560789801881, 27125634729375, 1455389462287489, 85805768251305992, 5515372218107327521, 383931652351786775721, 28778117694539885440129, 2311202255914842794592010, 198009919900727928789497641, 18027589454633803742596931571
Offset: 1

Views

Author

Peter Bala, Mar 11 2024

Keywords

Comments

It appears that a(2*n+1) is always a square, while a(2*n) = (n + 1) * a square. See A370260 and A370261.

Crossrefs

Programs

  • Maple
    seq( simplify( (ChebyshevT(n, n+1) - 1)/n^3 ), n = 1..20);
  • Mathematica
    Array[(ChebyshevT[#, #+1]-1)/#^3 &, 20] (* Paolo Xausa, Mar 14 2024 *)
  • Python
    from sympy import chebyshevt
    def A370259(n): return (chebyshevt(n,n+1)-1)//n**3 # Chai Wah Wu, Mar 13 2024

Formula

a(n) = Sum_{k = 1..n} (2^k)*n^(k-2)*binomial(n+k, 2*k)/(n + k) (shows that a(n) is an integer).
a(n) = (cos(n*arccos(n+1)) - 1)/n^3.
a(n) = (A342205(n) - 1)/n^3.
a(n) = ( (n + 1 + sqrt(n*(n+2)))^n + (n + 1 - sqrt(n*(n+2)))^n - 2 )/(2*n^3).