cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370272 Coefficient of x^n in the expansion of 1/( (1-x) * (1-x^3) )^n.

Original entry on oeis.org

1, 1, 3, 13, 51, 201, 819, 3382, 14067, 58927, 248303, 1051128, 4466787, 19043766, 81418746, 348936288, 1498601459, 6448162221, 27791057997, 119954739879, 518451715551, 2243481128020, 9718784202240, 42143960004750, 182917942802595, 794589638379576
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Cf. A063030.

Programs

  • PARI
    a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(2*n-3*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) * (1-x^3) ).