A370317 Number of labeled graphs with n vertices (allowing isolated vertices) and n edges, such that the edge set is connected.
1, 0, 0, 1, 15, 252, 4905, 110715, 2864148, 83838720, 2744568522, 99463408335, 3955626143040, 171344363805582, 8031863998136355, 405150528051451000, 21884686370917378050, 1260420510502767861840, 77105349570138633021624, 4993117552678619556356085
Offset: 0
Keywords
Examples
The a(0) = 0 through a(4) = 15 graphs: {} . . {{1,2},{1,3},{2,3}} {{1,2},{1,3},{1,4},{2,3}} {{1,2},{1,3},{1,4},{2,4}} {{1,2},{1,3},{1,4},{3,4}} {{1,2},{1,3},{2,3},{2,4}} {{1,2},{1,3},{2,3},{3,4}} {{1,2},{1,3},{2,4},{3,4}} {{1,2},{1,4},{2,3},{2,4}} {{1,2},{1,4},{2,3},{3,4}} {{1,2},{1,4},{2,4},{3,4}} {{1,2},{2,3},{2,4},{3,4}} {{1,3},{1,4},{2,3},{2,4}} {{1,3},{1,4},{2,3},{3,4}} {{1,3},{1,4},{2,4},{3,4}} {{1,3},{2,3},{2,4},{3,4}} {{1,4},{2,3},{2,4},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[#]==n&&Length[csm[#]]<=1&]], {n,0,5}]
-
PARI
a(n)=n!*polcoef(polcoef(exp(x + O(x*x^n))*(1 + log(sum(k=0, n, (1 + y + O(y*y^n))^binomial(k,2)*x^k/k!, O(x*x^n)))), n), n) \\ Andrew Howroyd, Feb 19 2024
Formula
a(n) = n!*[x^n][y^n] exp(x)*(1 + log(Sum_{k>=0} (1 + y)^binomial(k, 2)*x^k/k!)). - Andrew Howroyd, Feb 19 2024
Extensions
a(8) onwards from Andrew Howroyd, Feb 19 2024