cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370326 E.g.f.: exp(Sum_{k>=1} binomial(2*k,k) * x^k).

Original entry on oeis.org

1, 2, 16, 200, 3376, 71552, 1822144, 54131072, 1836436480, 70016026112, 2962490758144, 137711245058048, 6974788150104064, 382232015239454720, 22531888624878813184, 1421482338801856053248, 95553266255536369893376, 6817598649041309962600448, 514534725049116493981941760
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 15 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[Sum[Binomial[2*k,k]*x^k, {k, 1, 20}]], {x, 0, 20}], x] * Range[0, 20]!
    CoefficientList[Series[Exp[1/Sqrt[1 - 4*x] - 1], {x, 0, 20}], x] * Range[0, 20]!

Formula

E.g.f.: exp(1/sqrt(1 - 4*x) - 1).
a(n) ~ exp(3*n^(1/3)/2^(2/3) - n - 1) * 2^(2*n + 1/6) * n^(n - 1/3) / sqrt(3).

A370375 Number of compositions of n where there are A005809(k) sorts of part k.

Original entry on oeis.org

1, 3, 24, 201, 1710, 14649, 125934, 1084716, 9353574, 80711625, 696756420, 6016526145, 51962422464, 448833782556, 3877191573720, 33494487646632, 289365173239302, 2499947731531305, 21598513018825920, 186604716462810075, 1612224571249844910
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, binomial(3*k, k)*x^k)))

Formula

G.f.: 1 / (1 - Sum_{k>=1} binomial(3*k,k) * x^k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(3*k,k) * a(n-k).
Showing 1-2 of 2 results.