A370329 a(n) is the number of coreful divisors of the n-th powerful number that are also powerful numbers.
1, 1, 2, 1, 3, 1, 2, 4, 1, 1, 5, 2, 3, 1, 2, 1, 2, 6, 3, 1, 1, 2, 4, 1, 4, 7, 4, 1, 3, 2, 1, 2, 3, 6, 1, 1, 2, 8, 1, 5, 3, 6, 2, 1, 5, 3, 4, 1, 8, 1, 1, 2, 4, 4, 9, 1, 2, 6, 1, 1, 9, 2, 2, 2, 1, 2, 1, 1, 4, 5, 1, 10, 1, 2, 1, 3, 8, 6, 3, 10, 1, 6, 2, 1, 7, 2, 3
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := e - 1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 10^4}, s /@ Union@ Flatten@ Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]
-
PARI
lista(kmax) = {my(e); for(k = 1, kmax, e = factor(k)[,2]; if(k == 1 || vecmin(e) > 1, print1(prod(i = 1, #e, e[i]-1), ", ")));}
Formula
a(n) = 1 if and only if n is the square of a squarefree number (A062503).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3/2) * zeta(3) * Product_{p prime} (1 + 2/p^2 + 2/p^(5/2) - 1/p^3 - 2/p^(7/2) - 2/p^4) = 6.91748056612108993003... . (The infinite product of primes is the value of f(1/2) in A361430).
Comments