cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370338 Expansion of Product_{n>=1} (1 - 3^(n-1)*x^n) * (1 + 3^(n-1)*x^n)^2.

Original entry on oeis.org

1, 1, 2, 11, 24, 114, 297, 1224, 3240, 13230, 37017, 138510, 407754, 1469664, 4413366, 15717969, 47239200, 163408266, 511758000, 1719152586, 5348422224, 18083342907, 56672868240, 187301066040, 594207370746, 1947548449296, 6185182455792, 20263641256656, 64084643627283
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2024

Keywords

Comments

Compare to Product_{n>=1} (1 - 3^n*x^n) * (1 + 3^n*x^n)^2 = Sum_{n>=0} 3^(n*(n+1)/2) * x^(n*(n+1)/2).
In general, for d > 1, if g.f. = Product_{k>=1} (1 - d^(k-1)*x^k) * (1 + d^(k-1)*x^k)^2, then a(n) ~ c^(1/4) * d^(n + 3/2) * exp(2*sqrt(c*n)) / (2 * sqrt((d-1)*Pi) * (d+1) * n^(3/4)), where c = -2*polylog(2, -1/d) - polylog(2, 1/d). - Vaclav Kotesovec, Feb 26 2024

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 24*x^4 + 114*x^5 + 297*x^6 + 1224*x^7 + 3240*x^8 + 13230*x^9 + 37017*x^10 + 138510*x^11 + 407754*x^12 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 3*x^2)*(1 + 3*x^2)^2 * (1 - 9*x^3)*(1 + 9*x^3)^2 * (1 - 27*x^4)*(1 + 27*x^4)^2 * ... * (1 - 3^(n-1)*x^n)*(1 + 3^(n-1)*x^n)^2 * ...
Compare A(x) to the series that results from a similar infinite product:
(1 - 3*x)*(1 + 3*x)^2 * (1 - 9*x^2)*(1 + 9*x^2)^2 * (1 - 27*x^3)*(1 + 27*x^3)^2 * (1 - 81*x^4)*(1 + 81*x^4)^2 * ... = 1 + 3*x + 27*x^3 + 729*x^6 + 59049*x^10 + 14348907*x^15 + 10460353203*x^21 + 22876792454961*x^28 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( prod(k=1,n, (1 - 3^(k-1)*x^k) * (1 + 3^(k-1)*x^k)^2 +x*O(x^n)), n)}
    for(n=0,30, print1(a(n),", "))

Formula

a(n) ~ c^(1/4) * 3^(n + 3/2) * exp(2*sqrt(c*n)) / (2^(7/2) * sqrt(Pi) * n^(3/4)), where c = -2*polylog(2,-1/3) - polylog(2,1/3) = 0.2518530229985534570173197... - Vaclav Kotesovec, Feb 26 2024

A370434 Expansion of Product_{n>=1} (1 - 4^(n-1)*x^n) * (1 + 4^(n-1)*x^n)^2.

Original entry on oeis.org

1, 1, 3, 19, 60, 348, 1216, 6480, 23040, 121152, 445696, 2214912, 8475648, 40796160, 158564352, 754302976, 2949120000, 13694926848, 55180001280, 250151436288, 1008079994880, 4570684063744, 18552497111040, 82564035379200, 339344829186048, 1494986847682560, 6161930523770880
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2024

Keywords

Comments

Compare to Product_{n>=1} (1 - 4^n*x^n) * (1 + 4^n*x^n)^2 = Sum_{n>=0} 4^(n*(n+1)/2) * x^(n*(n+1)/2).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 60*x^4 + 348*x^5 + 1216*x^6 + 6480*x^7 + 23040*x^8 + 121152*x^9 + 445696*x^10 + 2214912*x^11 + 8475648*x^12 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 4*x^2)*(1 + 4*x^2)^2 * (1 - 16*x^3)*(1 + 16*x^3)^2 * (1 - 64*x^4)*(1 + 64*x^4)^2 * ... * (1 - 4^(n-1)*x^n)*(1 + 4^(n-1)*x^n)^2 * ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( prod(k=1,n, (1 - 4^(k-1)*x^k) * (1 + 4^(k-1)*x^k)^2 +x*O(x^n)), n)}
    for(n=0,40, print1(a(n),", "))

Formula

a(n) ~ c^(1/4) * 2^(2*n + 2) * exp(2*sqrt(c*n)) / (5 * sqrt(3*Pi) * n^(3/4)), where c = -2*polylog(2, -1/4) - polylog(2, 1/4). - Vaclav Kotesovec, Feb 27 2024

A370435 Expansion of Product_{n>=1} (1 - 5^(n-1)*x^n) * (1 + 5^(n-1)*x^n)^2.

Original entry on oeis.org

1, 1, 4, 29, 120, 820, 3625, 23400, 105000, 669500, 3075625, 18837500, 89237500, 532500000, 2554062500, 15086640625, 72843750000, 421773437500, 2084812500000, 11834804687500, 58638281250000, 332210205078125, 1656773437500000, 9240966796875000, 46624682617187500, 257479980468750000
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2024

Keywords

Comments

Compare to Product_{n>=1} (1 - 5^n*x^n) * (1 + 5^n*x^n)^2 = Sum_{n>=0} 5^(n*(n+1)/2) * x^(n*(n+1)/2).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 29*x^3 + 120*x^4 + 820*x^5 + 3625*x^6 + 23400*x^7 + 105000*x^8 + 669500*x^9 + 3075625*x^10 + 18837500*x^11 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 5*x^2)*(1 + 5*x^2)^2 * (1 - 25*x^3)*(1 + 25*x^3)^2 * (1 - 125*x^4)*(1 + 125*x^4)^2 * ... * (1 - 5^(n-1)*x^n)*(1 + 5^(n-1)*x^n)^2 * ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( prod(k=1,n, (1 - 5^(k-1)*x^k) * (1 + 5^(k-1)*x^k)^2 +x*O(x^n)), n)}
    for(n=0,40, print1(a(n),", "))

Formula

a(n) ~ c^(1/4) * 5^(n + 3/2) * exp(2*sqrt(c*n)) / (24 * sqrt(Pi) * n^(3/4)), where c = -2*polylog(2, -1/5) - polylog(2, 1/5). - Vaclav Kotesovec, Feb 27 2024
Showing 1-3 of 3 results.