A370348 Numbers k such that there are fewer divisors of prime indices of k than there are prime indices of k.
4, 8, 12, 16, 18, 20, 24, 27, 32, 36, 40, 44, 48, 50, 54, 56, 60, 64, 68, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 124, 125, 126, 128, 132, 135, 136, 144, 150, 160, 162, 164, 168, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208, 216, 220, 224, 225, 236, 240, 242, 243, 248, 250, 252, 256
Offset: 1
Keywords
Examples
a(5) = 18 is a term because the prime indices of 18 = 2 * 3^2 are 1,2,2, and there are 3 of these but only 2 divisors of prime indices, namely 1 and 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) uses numtheory; local F,D,t; F:= map(t -> [pi(t[1]),t[2]], ifactors(n)[2]); D:= `union`(seq(divisors(t[1]), t = F)); nops(D) < add(t[2], t = F) end proc: select(filter, [$1..300]);
-
Mathematica
filter[n_] := Module[{F, d}, F = {PrimePi[#[[1]]], #[[2]]}& /@ FactorInteger[n]; d = Union[Flatten[Divisors /@ F[[All, 1]]]]; Length[d] < Total[F[[All, 2]]]]; Select[Range[300], filter] (* Jean-François Alcover, Mar 08 2024, after Maple code *)
Comments