A370362 Numbers k such that any two consecutive decimal digits of k^2 differ by 1 after arranging the digits in decreasing order.
0, 1, 2, 3, 18, 24, 66, 74, 152, 179, 3678, 3698, 4175, 4616, 5904, 5968, 6596, 7532, 8082, 8559, 9024, 10128, 10278, 11826, 12363, 12543, 12582, 13278, 13434, 13545, 13698, 14442, 14676, 14766, 15681, 15963, 16854, 17529, 17778, 18072, 19023, 19377, 19569, 19629
Offset: 1
Examples
18^2 = 324 consists of the consecutive digits 2, 3 and 4; 24^2 = 576 consists of the consecutive digits 5, 6 and 7; 66^2 = 4356 consists of the consecutive digits 3, 4, 5 and 6; 74^2 = 5476 consists of the consecutive digits 4, 5, 6 and 7.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..160
Programs
-
PARI
isconsecutive(m, {b=10})=my(v=vecsort(digits(m, b))); for(i=2, #v, if(v[i]!=1+v[i-1], return(0))); 1 \\ isconsecutive(k, b) == 1 if and only if any two consecutive digits of the base-n expansion of m differ by 1 after arranging the digits in decreasing order a(n) = isconsecutive(n^2)
-
Python
from math import isqrt from sympy.ntheory import digits def afull(): return([i for i in range(isqrt(10**10)+1) if len(d:=sorted(str(i*i))) == ord(d[-1])-ord(d[0])+1 == len(set(d))]) print(afull()) # Michael S. Branicky, Feb 23 2024
Comments