A370365 Total sum over all j in [n] of the number of partitions of [j*(n-j)] into (n-j) sets of size j having at least one set of consecutive numbers whose maximum (if j>0) is a multiple of j.
0, 1, 2, 3, 4, 11, 77, 1571, 101924, 21824842, 18998281193, 63437859518312, 1037654210033812290, 72422876152852051595343, 27306605231809196751929593081, 50723306700937648229840111395656830, 510196838745355443955126736574361550469276
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..55
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k=0, signum(n), add( (-1)^(n-j+1)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n-1)) end: a:= n-> add(b(j, n-j), j=0..n): seq(a(n), n=0..16);