A370396 Number of nonnegative integer matrices with sum of entries equal to 2*n or 2*n+1, no zero rows or columns, which are symmetric about both diagonals.
1, 3, 13, 63, 347, 2061, 13219, 89877, 646009, 4866339, 38305573, 313535631, 2661927255, 23367856281, 211680786375, 1974332847177, 18929186519705, 186249976522155, 1878195826349765, 19386702579997095, 204603867473735387, 2205553917952342605, 24261717301000314867
Offset: 0
Keywords
Examples
The a(2) = 13 matrices with sum of entries equal to 4: [4] . [2 0] [1 1] [0 2] [0 2] [1 1] [2 0] . [1 0 0] [0 0 1] [0 1 0] [0 2 0] [0 2 0] [1 0 1] [0 0 1] [1 0 0] [0 1 0] . [1 0 0 0] [0 0 0 1] [1 0 0 0] [0 1 0 0] [0 1 0 0] [0 0 1 0] [0 0 1 0] [0 0 1 0] [0 1 0 0] [0 0 0 1] [1 0 0 0] [0 0 0 1] . [0 0 0 1] [0 1 0 0] [0 0 1 0] [0 0 1 0] [1 0 0 0] [0 0 0 1] [0 1 0 0] [0 0 0 1] [1 0 0 0] [1 0 0 0] [0 0 1 0] [0 1 0 0]
Crossrefs
Cf. A135401.
Programs
-
SageMath
nmax = 20 R.
= PowerSeriesRing(QQ) S = [R(1)] for k in range(nmax+1): S.append(sum(S[i]*binomial(k,i)*x^(2*(k-i)) for i in range(k+1))/(1-x^2+O(x^(nmax+1)))^k/(1-x+O(x^(nmax+1)))-S[k]) print(sum(1/(1-x+O(x^(nmax+1)))/(1-x^2+O(x^(nmax+1)))^n*sum(x^(2*(n-k))*factorial(n)/factorial(n-k)/factorial(k-i)/factorial(k-j)/factorial(i+j-k)*S[i]*S[j] for k in range(n+1) for i in range(k+1) for j in range(k-i,k+1)) for n in range(nmax+1)).coefficients())
Comments