A370436 Expansion of e.g.f. A(x) satisfying A(x) = Product_{n>=1} cosh(x^n*A(x)).
1, 1, 25, 1801, 251665, 60023281, 21783217897, 11244708818617, 7836581579364769, 7098342754565616481, 8108890187934052712761, 11407792409056590722072041, 19382875328830017602572089265, 39137558151287789768856541250641, 92642186419738783260791047129751305
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x^2/2! + 25*x^4/4! + 1801*x^6/6! + 251665*x^8/8! + 60023281*x^10/10! + 21783217897*x^12/12! + 11244708818617*x^14/14! + ... where A(x) = cosh(x*A(x)) * cosh(x^2*A(x)) * cosh(x^3*A(x)) * cosh(x^4*A(x)) * ... RELATED SERIES. log(A(x)) = x^2/2! + 22*x^4/4! + 1456*x^6/6! + 189232*x^8/8! + 43031296*x^10/10! + 15070050304*x^12/12! + 7582799641600*x^14/14! + ... where the logarithm of A(x) may be written as log(A(x)) = A(x)^2*x^2/((1-x^2)*2!) - 2*A(x)^4*x^4/((1-x^4)*4!) + 16*A(x)^6*x^6/((1-x^6)*6!) - 272*A(x)^8*x^8/((1-x^8)*8!) +- ... in which the coefficients (A000182) are taken from the series for log(cosh(x)) = x^2/2! - 2*x^4/4! + 16*x^6/6! - 272*x^8/8! + 7936*x^10/10! - 353792*x^12/12! + ... + (-1)^(n-1)*A000182(n)*x^(2*n)/(2*n)! + ... SPECIFIC VALUES. A(1/2) = sr = sinh(sr)/sr = 1.3132837183534835944... (A133916). A(1/3) = 1.0732039012742053466040583737125980229145749599... A(1/4) = 1.0360440144515230397124814819872716708635571534... A(1/5) = 1.0218446382532843162980010372360052478618874316... A(1/6) = 1.0147502698567245499165367962927287752921277594... A(1/8) = 1.0080767433235165071886167844759835649060174961...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..201
Programs
-
Mathematica
nmax = 20; A[] = 0; Do[A[x] = Product[Cosh[x^k*A[x]], {k, 1, 2*nmax}] + O[x]^(2*nmax + 1) // Normal, 2*nmax + 1]; Table[(CoefficientList[A[x], x]*Range[0, 2*nmax]!)[[2*j-1]], {j, 1, nmax}] (* Vaclav Kotesovec, Mar 01 2024 *)
-
PARI
{a(n) = my(A=1); for(m=1, n+1, A=truncate(A); A = prod(k=1, m, cosh(x^k*A +O(x^(2*m+1))) ) ; ); (2*n)!*polcoeff(A, 2*n)} for(n=0, 20, print1(a(n), ", "))
Formula
E.g.f. A(x) = Sum_{n>=0} a(n) * x^(2*n)/(2*n)! satisfies the following formulas.
(1) A(x) = Product_{n>=1} cosh(x^n*A(x)).
(2) log(A(x)) = Sum_{n>=1} (-1)^(n-1)*A000182(n) * A(x)^(2*n) * x^(2*n)/((1-x^(2*n))*(2*n)!), where A000182 are the tangent numbers.
a(n) ~ c * d^n * (n-1)!^2, where d = 13.91357494878057309372... and c = 0.2556213529084458598... - Vaclav Kotesovec, Mar 01 2024
Comments