A152807
G.f.: limit of the ratio of the g.f.s of adjacent rows in triangle A152805.
Original entry on oeis.org
1, 1, 4, 16, 72, 340, 1688, 8648, 45468, 243832, 1328800, 7337500, 40965984, 230864496, 1311526532, 7502799104, 43183861352, 249897858164, 1453076715976, 8485587751112, 49745923115916, 292655237446616, 1727193226708608
Offset: 0
G.f.: 1 + q + 4*q^2 + 16*q^3 + 72*q^4 + 340*q^5 + 1688*q^6 + 8648*q^7 +...
SAMPLE ROW G.F.s OF TRIANGLE A152805:
R_4(q) = -1 + 3*q + 3*q^2 - 3*q^4 - 3*q^5 + q^6;
R_5(q) = -1 + 4*q + 3*q^2 - 3*q^3 - 4*q^4 - 14*q^5 - 4*q^6 - 3*q^7 +...;
R_6(q) = -1 + 5*q + 2*q^2 - 9*q^3 - 11*q^4 - 19*q^5 - 16*q^6 - 11*q^7 +...
RATIO OF ROW G.F.s approach the g.f. of this sequence:
R_4(q)/R_5(q) = 1 + q + 4*q^2 + 16*q^3 + 72*q^4 + 309*q^5 +...
R_5(q)/R_6(q) = 1 + q + 4*q^2 + 16*q^3 + 72*q^4 + 340*q^5 +...
Limit_{n->infty} R_n(q)/R_{n+1}(q) = 1 + q + 4*q^2 + 16*q^3 + 72*q^4 +...
-
(* Calculation of constants {d,c}: *) {1/r, -s*Log[r]*Sqrt[r*Derivative[0, 1][QPochhammer][2*s, r] / (2*Pi*QPolyGamma[1, Log[2*s]/Log[r], r])]} /. FindRoot[{1 + QPochhammer[2*s, r] == 0, Log[1 - r] + QPolyGamma[0, Log[2*s]/Log[r], r] == 0}, {r, 1/6}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Feb 18 2024 *)
-
/* Limit of n-th row polynomial in q of triangle A152805 */
{faq(n,q) = prod(j=1, n, (q^j-1)/(q-1))} \\ q-factorial of n
{R(n) = faq(n,q) * polcoeff( 2/(1 + sum(m=0, n, (2*x)^m/faq(m,q) + x*O(x^(n+2)))), n, x)}
{a(n) = polcoeff(R(n)/R(n+1) + q*O(q^n), n, q)}
for(n=0,30, print1(a(n),", ")) \\ Paul D. Hanna, Feb 18 2024
-
/* A(q) satisfies -1 = Product_{n>=0} (1 - 2*q^n*A(q)) */
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( 1 + prod(k=0,#A, 1 - 2*x^k*Ser(A))/2, #A-1, x) );A[n+1]}
for(n=0,30, print1(a(n),", ")) \\ Paul D. Hanna, Feb 18 2024
A370442
Expansion of g.f. A(q) satisfying -2 = Product_{n>=0} (1 - 3*q^n*A(q)).
Original entry on oeis.org
1, 2, 12, 78, 570, 4434, 36174, 305142, 2640612, 23311068, 209111736, 1900666896, 17466522690, 162014855658, 1514885838582, 14263411673472, 135117683341050, 1286880634334490, 12315286940334942, 118362499698060384, 1141990331203349562, 11056838563337857548, 107394670044059002968
Offset: 0
G.f.: A(q) = 1 + 2*q + 12*q^2 + 78*q^3 + 570*q^4 + 4434*q^5 + 36174*q^6 + 305142*q^7 + 2640612*q^8 + 23311068*q^9 + 209111736*q^10 + ...
where A(q) satisfies the infinite product
-2 = (1 - 3*A(q)) * (1 - 3*q*A(q)) * (1 - 3*q^2*A(q)) * (1 - 3*q^3*A(q)) * (1 - 3*q^4*A(q)) * (1 - 3*q^5*A(q)) * ...
-
(* Calculation of constants {d,c}: *) With[{m = 3}, {1/r, -s*Log[r] * Sqrt[r*Derivative[0, 1][QPochhammer][m*s, r] / (2*Pi*(m - 1)*QPolyGamma[1, Log[m*s]/Log[r], r])]} /. FindRoot[{m + QPochhammer[m*s, r] == 1, Log[1 - r] + QPolyGamma[0, Log[m*s]/Log[r], r] == 0}, {r, 1/m^2}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Feb 18 2024 *)
-
/* A(q) satisfies -2 = Product_{n>=0} (1 - 3*q^n*A(q)) */
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( 2 + prod(k=0,#A, 1 - 3*x^k*Ser(A)) /3, #A-1, x) ); H=A; A[n+1]}
for(n=0,30, print1(a(n),", "))
-
/* limit_{n->oo} R_{n}(q) / R_{n+1}(q) */
{faq(n,q) = prod(j=1, n, (q^j-1)/(q-1))} \\ q-factorial of n
{R(n) = faq(n,q) * polcoeff( 3/(1 + 2*sum(m=0, n, (3*x)^m/faq(m,q) + x*O(x^(n+2)))), n, x)}
{a(n) = polcoeff(R(n+2)/R(n+3) + q*O(q^n), n, q)}
for(n=0,30, print1(a(n),", "))
A370443
Expansion of g.f. A(q) satisfying -3 = Product_{n>=0} (1 - 4*q^n*A(q)).
Original entry on oeis.org
1, 3, 24, 216, 2184, 23592, 267144, 3128472, 37582680, 460564632, 5735093832, 72359126376, 923021734344, 11884281689688, 154243249784856, 2015831498613720, 26506024201097352, 350404606655241768, 4654501489433893512, 62092356103141330584, 831534637662059617368
Offset: 0
G.f.: A(q) = 1 + 3*q + 24*q^2 + 216*q^3 + 2184*q^4 + 23592*q^5 + 267144*q^6 + 3128472*q^7 + 37582680*q^8 + 460564632*q^9 + 5735093832*q^10 + ...
where A(q) satisfies the infinite product
-3 = (1 - 4*A(q)) * (1 - 4*q*A(q)) * (1 - 4*q^2*A(q)) * (1 - 4*q^3*A(q)) * (1 - 4*q^4*A(q)) * (1 - 4*q^5*A(q)) * ...
-
(* Calculation of constants {d,c}: *) With[{m = 4}, {1/r, -s*Log[r] * Sqrt[r*Derivative[0, 1][QPochhammer][m*s, r] / (2*Pi*(m - 1)*QPolyGamma[1, Log[m*s]/Log[r], r])]} /. FindRoot[{m + QPochhammer[m*s, r] == 1, Log[1 - r] + QPolyGamma[0, Log[m*s]/Log[r], r] == 0}, {r, 1/m^2}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Feb 18 2024 *)
-
/* A(q) satisfies -3 = Product_{n>=0} (1 - 4*q^n*A(q)) */
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( 3 + prod(k=0,#A, 1 - 4*x^k*Ser(A)) /4, #A-1, x) ); H=A; A[n+1]}
for(n=0,30, print1(a(n),", "))
-
/* limit_{n->oo} R_{n}(q) / R_{n+1}(q) */
{faq(n,q) = prod(j=1, n, (q^j-1)/(q-1))} \\ q-factorial of n
{R(n) = faq(n,q) * polcoeff( 4/(1 + 3*sum(m=0, n, (4*x)^m/faq(m,q) + x*O(x^(n+2)))), n, x)}
{a(n) = polcoeff(R(n+1)/R(n+2) + q*O(q^n), n, q)}
for(n=0,30, print1(a(n),", "))
A370445
Expansion of g.f. A(q) satisfying -5 = Product_{n>=0} (1 - 6*q^n*A(q)).
Original entry on oeis.org
1, 5, 60, 840, 13200, 222060, 3914880, 71382000, 1335069060, 25471344000, 493782003960, 9698680513380, 192596799930360, 3860313616039080, 77994531433117500, 1586781765309289080, 32479537197876474480, 668397905439059302860, 13820909295920888641200, 287010766542642877455600
Offset: 0
G.f.: A(q) = 1 + 5*q + 60*q^2 + 840*q^3 + 13200*q^4 + 222060*q^5 + 3914880*q^6 + 71382000*q^7 + 1335069060*q^8 + 25471344000*q^9 + 493782003960*q^10 + ...
where A(q) satisfies the infinite product
-5 = (1 - 6*A(q)) * (1 - 6*q*A(q)) * (1 - 6*q^2*A(q)) * (1 - 6*q^3*A(q)) * (1 - 6*q^4*A(q)) * (1 - 6*q^5*A(q)) * ...
-
(* Calculation of constants {d,c}: *) With[{m = 6}, {1/r, -s*Log[r] * Sqrt[r*Derivative[0, 1][QPochhammer][m*s, r] / (2*Pi*(m - 1)*QPolyGamma[1, Log[m*s]/Log[r], r])]} /. FindRoot[{m + QPochhammer[m*s, r] == 1, Log[1 - r] + QPolyGamma[0, Log[m*s]/Log[r], r] == 0}, {r, 1/m^2}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Feb 18 2024 *)
-
/* A(q) satisfies -5 = Product_{n>=0} (1 - 6*q^n*A(q)) */
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( 5 + prod(k=0,#A, 1 - 6*x^k*Ser(A)) /6, #A-1, x) ); H=A; A[n+1]}
for(n=0,30, print1(a(n),", "))
-
/* limit_{n->oo} R_{n}(q) / R_{n+1}(q) */
{faq(n,q) = prod(j=1, n, (q^j-1)/(q-1))} \\ q-factorial of n
{R(n) = faq(n,q) * polcoeff( 6/(1 + 5*sum(m=0, n, (6*x)^m/faq(m,q) + x*O(x^(n+2)))), n, x)}
{a(n) = polcoeff(R(n+1)/R(n+2) + q*O(q^n), n, q)}
for(n=0,30, print1(a(n),", "))
Showing 1-4 of 4 results.
Comments