cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370446 Expansion of g.f. A(x) satisfying A(x)^3 + x^4/A(x)^3 = A(x^3) + x^4/A(x^3) - 3*x^2.

Original entry on oeis.org

1, 1, 2, 6, 20, 71, 267, 1041, 4168, 17047, 70902, 298967, 1275141, 5491504, 23846271, 104295430, 459023543, 2031459236, 9034769573, 40358643042, 180998556943, 814645632727, 3678542796070, 16659932961647, 75657738747396, 344446195875766, 1571786529601990, 7187790264787872
Offset: 1

Views

Author

Paul D. Hanna, Mar 09 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 71*x^6 + 267*x^7 + 1041*x^8 + 4168*x^9 + 17047*x^10 + 70902*x^11 + 298967*x^12 + 1275141*x^13 + 5491504*x^14 + 23846271*x^15 + ...
RELATED SERIES.
We can illustrate the formulas with the following related expansions.
(1) A(x)^3 + 2*x^2 + x^4/A(x)^3 = x - x^2 + x^3 - x^4 + x^6 - x^7 + 2*x^9 - 3*x^10 + 6*x^12 - 9*x^13 + 20*x^15 - 30*x^16 + 71*x^18 - 110*x^19 + 267*x^21 + ...
which equals A(x^3) - x^2 + x^4/A(x^3), as can be seen from
x^4/A(x^3) = x - x^4 - x^7 - 3*x^10 - 9*x^13 - 30*x^16 - 110*x^19 + ...
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 31*x^6 + 114*x^7 + 435*x^8 + 1715*x^9 + ...
x^4/A(x)^3 = x - 3*x^2 - 4*x^4 - 9*x^5 - 30*x^6 - 115*x^7 - 435*x^8 - 1713*x^9 + ...
(2) Let F(x) be the g.f. of A370440, which begins
F(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 6*x^6 + 15*x^7 + 30*x^8 + 55*x^9 + 113*x^10 + 274*x^11 + 683*x^12 + ...
where F(x)^3 = F( x^3 + 3*x^2*F(x)^2 ),
then the series reversion of F(x) begins
A(x^3) - x^2 + x^4/A(x^3) = x - x^2 + x^3 - x^4 + x^6 - x^7 + 2*x^9 - 3*x^10 + 6*x^12 - 9*x^13 + 20*x^15 - 30*x^16 + 71*x^18 - 110*x^19 + 267*x^21 - 419*x^22 + 1041*x^24 + ...
(3) Let G(x) be the g.f. of A264228, which begins
G(x) = x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 274*x^8 + 785*x^9 + 2275*x^10 + 6656*x^11 + 19630*x^12 +...
where G(x)^3 = G( x^3/(1 - 3*x) ),
then the series reversion of G(x) begins
-x^2/(A(-x^3) - x^2 + x^4/A(-x^3)) = x^2/(x + x^2 + x^3 + x^4 - x^6 - x^7 + 2*x^9 + 3*x^10 - 6*x^12 - 9*x^13 + 20*x^15 + 30*x^16 - 71*x^18 - 110*x^19 + 267*x^21 + 419*x^22 - 1041*x^24 +...).
SPECIFIC VALUES.
A(1/4.834464) = 0.349644497578571280258023712232522068793519739...
A(1/5) = 0.29940801195429552263938628184744484915469836164855...
A(1/6) = 0.21539123666426270273178791857213676628593723946879...
A(1/7) = 0.17414937372444126736977770687571455113383911571251...
A(1/8) = 0.14713126344900776621336355426627444003268957268553...
A(1/5^3) = 0.00806504925055020701973761348380106375185943151538...
A(1/6^3) = 0.00465126435780731657600811126033650347236250831668...
A(1/7^3) = 0.00292400175440295890949208907819991271975334925594...
which may be used to verify that the formula
A(x)^3 + x^4/A(x)^3 = A(x^3) + x^4/A(x^3) - 3*x^2
holds for these specific values.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(m=1,n, A=truncate(A) +x^4*O(x^m); A = ( x^4/(x^4/subst(A,x,x^3) + subst(A,x,x^3) - A^3 - 3*x^2) +x^4*O(x^n))^(1/3) );polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 + 2*x^2 + x^4/A(x)^3 = A(x^3) - x^2 + x^4/A(x^3).
(2) F( A(x^3) - x^2 + x^4/A(x^3) ) = x, where F(x) = F( x^3 + 3*x^2*F(x)^2 )^(1/3) is the g.f. of A370440.
(3) G( -x^2/(A(-x^3) - x^2 + x^4/A(-x^3)) ) = x, where G(x) = G( x^3/(1 - 3*x) )^(1/3) is the g.f. of A264228.
a(n) ~ c * d^n / n^(3/2), where d = 4.8344630246454026903035642546835542141482126303313357979263... and c = 0.0713578385738499677445741870058758452888939567284935382... - Vaclav Kotesovec, Mar 13 2024
The radius of convergence r = 0.20684820525095397... = 1/d (where d is given above), and A(r) = 0.3497581458819115559285308998459940399916633464611700768... satisfy A(r) = r^(2/3) and A(r^3) = (5 - sqrt(21))/2 * r^2. - Paul D. Hanna, Mar 13 2024