A370452 Prime powers of the form 2*p^k-1, where p is prime and k >= 1.
3, 5, 7, 9, 13, 17, 25, 31, 37, 49, 53, 61, 73, 81, 97, 121, 127, 157, 193, 241, 277, 313, 337, 361, 397, 421, 457, 541, 577, 613, 625, 661, 673, 733, 757, 841, 877, 997, 1093, 1153, 1201, 1213, 1237, 1249, 1321, 1381, 1453, 1621, 1657, 1681, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2401, 2473, 2557, 2593, 2797, 2857
Offset: 1
Examples
3 = 2*2^1 - 1 = 3^1; 5 = 2*3^1 - 1 = 5^1; 7 = 2*2^2 - 1 = 7^1; 9 = 2*5^1 - 1 = 3^2.
Links
Programs
-
Maple
filter:= n -> nops(numtheory:-factorset(n))=1 and nops(numtheory:-factorset((n+1)/2))=1: select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Feb 20 2024
-
Mathematica
Select[Range[3000], PrimePowerQ[#] && PrimePowerQ[(# + 1)/2] &] (* Amiram Eldar, Feb 19 2024 *)
-
PARI
isok(q) = isprimepower(q) && (q%2) && isprimepower((q+1)/2); \\ Michel Marcus, Jun 14 2024
Comments