A370455 a(n) = greatest m such that 2^m divides prime(n+1)*prime(n+2) - prime(n)*prime(n+3).
0, 1, 2, 3, 2, 3, 3, 1, 4, 1, 3, 3, 3, 1, 2, 4, 1, 4, 1, 1, 2, 2, 1, 1, 3, 2, 3, 3, 3, 2, 1, 2, 3, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 4, 1, 3, 1, 3, 7, 1, 2, 2, 2, 3, 2, 4, 1, 3, 1, 2, 1, 3, 3, 3, 1, 2, 2, 1, 5, 2, 2, 1, 1, 2, 2, 1, 5, 1, 1, 3, 3, 2, 1, 2, 2, 1
Offset: 1
Keywords
Examples
prime(4)*prime(5) - prime(3)*prime(6) = 7*11 - 5*13 = 12, which is divisible by 2^2 but not 2^3, so a(3) = 2.
Programs
-
Mathematica
p[n_] := Prime[n]; u = Table[p[n + 1] p[n + 2] - p[n] p[n + 3], {n, 1, 2000}]; (* A117302 *) s[n_] := Last[Select[Range[15], IntegerQ[u[[n]]/2^#] &]]; Table[s[n], {n, 1, 200}]
-
PARI
a(n) = valuation(prime(n+1)*prime(n+2) - prime(n)*prime(n+3), 2); \\ Michel Marcus, Mar 01 2024
-
Python
from sympy import prime def A370455(n): return (~(m:=prime(n+1)*prime(n+2)-prime(n)*prime(n+3)) & m-1).bit_length() # Chai Wah Wu, Mar 02 2024