cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370455 a(n) = greatest m such that 2^m divides prime(n+1)*prime(n+2) - prime(n)*prime(n+3).

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 3, 1, 4, 1, 3, 3, 3, 1, 2, 4, 1, 4, 1, 1, 2, 2, 1, 1, 3, 2, 3, 3, 3, 2, 1, 2, 3, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 4, 1, 3, 1, 3, 7, 1, 2, 2, 2, 3, 2, 4, 1, 3, 1, 2, 1, 3, 3, 3, 1, 2, 2, 1, 5, 2, 2, 1, 1, 2, 2, 1, 5, 1, 1, 3, 3, 2, 1, 2, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 26 2024

Keywords

Examples

			prime(4)*prime(5) - prime(3)*prime(6) = 7*11 - 5*13 = 12, which is divisible by 2^2 but not 2^3, so a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    p[n_] := Prime[n];
    u = Table[p[n + 1] p[n + 2] - p[n] p[n + 3], {n, 1, 2000}];  (* A117302 *)
    s[n_] := Last[Select[Range[15], IntegerQ[u[[n]]/2^#] &]];
    Table[s[n], {n, 1, 200}]
  • PARI
    a(n) = valuation(prime(n+1)*prime(n+2) - prime(n)*prime(n+3), 2); \\ Michel Marcus, Mar 01 2024
    
  • Python
    from sympy import prime
    def A370455(n): return (~(m:=prime(n+1)*prime(n+2)-prime(n)*prime(n+3)) & m-1).bit_length() # Chai Wah Wu, Mar 02 2024