cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370477 G.f. satisfies A(x) = ( 1 + x * (A(x)^(1/2) / (1-x))^(3/2) )^2.

Original entry on oeis.org

1, 2, 7, 24, 83, 290, 1023, 3640, 13052, 47124, 171190, 625328, 2295561, 8464690, 31339455, 116458200, 434217000, 1623971580, 6090823890, 22903571280, 86332453350, 326145976884, 1234662753126, 4682968975664, 17794062340008, 67726620644200
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1+x*((1-sqrt(1-4*x))/(2*x))^3)^2)
    
  • PARI
    a(n, r=2, s=3/2, t=3/2, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: B(x)^2 where B(x) is the g.f. of A071724.
a(n) = 2 * Sum_{k=0..n} binomial(3*k/2+2,k) * binomial(n+k/2-1,n-k)/(3*k/2+2).

A370480 G.f. satisfies A(x) = ( 1 + x * (A(x)^(1/3) / (1-x))^2 )^3.

Original entry on oeis.org

1, 3, 15, 73, 360, 1800, 9112, 46632, 240936, 1255336, 6589080, 34811784, 184990568, 988156872, 5303039256, 28579068520, 154605138984, 839272725864, 4570409517848, 24961191298248, 136688674353000, 750355591919240, 4128471397725336, 22762905189252264
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1+x*((1-x-sqrt(1-6*x+x^2))/(2*x))^2)^3)
    
  • PARI
    a(n, r=3, s=2, t=2, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: B(x)^3 where B(x) is the g.f. of A006319.
a(n) = 3 * Sum_{k=0..n} binomial(2*k+3,k) * binomial(n+k-1,n-k)/(2*k+3).
Showing 1-2 of 2 results.