cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370510 Expansion of Sum_{k>=0} k! * ( x * (1+x^3) )^k.

Original entry on oeis.org

1, 1, 2, 6, 25, 124, 738, 5136, 40922, 367218, 3664224, 40240560, 482278326, 6263414736, 87618506160, 1313435465280, 21003904630824, 356910121855320, 6422020465846320, 121980351190294800, 2438956634267865720, 51206322309647263200, 1126314497201852150640
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1+x^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)!*binomial(n-3*k, k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (n-3*k)! * binomial(n-3*k,k).

A370670 Expansion of Sum_{k>=0} k! * ( x/(1+x^3) )^k.

Original entry on oeis.org

1, 1, 2, 6, 23, 116, 702, 4945, 39726, 358596, 3593759, 39596032, 475750740, 6190873441, 86740653730, 1301942638170, 20842037779079, 354469561697988, 6382795892548194, 121310901632237857, 2426864464216669694, 50975856191753357928, 1121692313538562441535
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x/(1+x^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*(n-3*k)!*binomial(n-2*k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-3*k)! * binomial(n-2*k-1,k).
a(n) = n*a(n-1) + a(n-3) + (n-6)*a(n-4) + 2*a(n-6) for n > 6.
Showing 1-2 of 2 results.