cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370510 Expansion of Sum_{k>=0} k! * ( x * (1+x^3) )^k.

Original entry on oeis.org

1, 1, 2, 6, 25, 124, 738, 5136, 40922, 367218, 3664224, 40240560, 482278326, 6263414736, 87618506160, 1313435465280, 21003904630824, 356910121855320, 6422020465846320, 121980351190294800, 2438956634267865720, 51206322309647263200, 1126314497201852150640
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1+x^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)!*binomial(n-3*k, k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (n-3*k)! * binomial(n-3*k,k).

A370668 Expansion of Sum_{k>0} k! * ( x * (1+x^k) )^k.

Original entry on oeis.org

1, 3, 6, 28, 120, 740, 5040, 40416, 362898, 3629400, 39916800, 479006070, 6227020800, 87178326480, 1307674369200, 20922790210656, 355687428096000, 6402373709004720, 121645100408832000, 2432902008212929224, 51090942171709545840, 1124000727778046764800
Offset: 1

Views

Author

Seiichi Manyama, Feb 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*(x*(1+x^k))^k))
    
  • PARI
    a(n) = sumdiv(n,d, d!*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} d! * binomial(d,n/d-1).
If p is an odd prime, a(p) = p!.
Showing 1-2 of 2 results.