A370518 Triangle of numbers read by rows: T(n,k) = Sum_{i=0..n} binomial(n,i)*(n-i)!*Stirling1(i,k)*TC(n,i) where TC(n,k) = Sum_{i=0..n-k} binomial(n+1,n-k-i)*Stirling2(i+3,i+1)*(-1)^(i) for n >= 0, 0 <= k <= n.
1, -5, 1, 14, -9, 1, -18, 29, -12, 1, 0, -22, 35, -14, 1, 0, -26, 15, 25, -15, 1, 0, -60, 4, 75, -5, -15, 1, 0, -204, -56, 259, 70, -56, -14, 1, 0, -912, -484, 1092, 609, -168, -126, -12, 1, 0, -5040, -3708, 5480, 4599, -231, -882, -210, -9, 1, 0, -33120, -30024, 31820, 36350, 3675, -6027, -2370, -300, -5, 1
Offset: 0
Examples
n\k 0 1 2 3 4 5 6 0: 1 1: -5 1 2: 14 -9 1 3: -18 29 -12 1 4: 0 -22 35 -14 1 5: 0 -26 15 25 -15 1 6: 0 -60 4 75 -5 -15 1
Links
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
Crossrefs
Programs
-
Maple
C:=(n,k)->n!/(k!*(n-k)!) : T0:=(m,n,k)->sum(C(n+1,n-k-p)*Stirling2(p+m+1,p+1)*((-1)^p), p=0..n-k) : T:=(m,n,k)->sum(C(n,r)*(n-r)!*Stirling1(r,k)*T0(m,n,r), r=0..n) m:=2 : seq(seq T(m,n,k), k=0..n), n=0..10);
Formula
T(n,k) = Sum_{i=0..n} binomial(n,i)*(n-i)!*Stirling1(i,k)*TC(m,n,i) where TC(m,n,k) = Sum_{i=0..n-k} binomial(n+1,n-k-i)*Stirling2(i+m+1,i+1)*(-1)^(i),m = 2 for n >= 0.
Comments