A094645 Triangle of generalized Stirling numbers of the first kind.
1, -1, 1, 0, -1, 1, 0, -1, 0, 1, 0, -2, -1, 2, 1, 0, -6, -5, 5, 5, 1, 0, -24, -26, 15, 25, 9, 1, 0, -120, -154, 49, 140, 70, 14, 1, 0, -720, -1044, 140, 889, 560, 154, 20, 1, 0, -5040, -8028, -64, 6363, 4809, 1638, 294, 27, 1, 0, -40320, -69264, -8540, 50840, 44835, 17913, 3990, 510, 35, 1
Offset: 0
Examples
Triangle begins 1; -1, 1; 0, -1, 1; 0, -1, 0, 1; 0, -2, -1, 2, 1; 0, -6, -5, 5, 5, 1; 0, -24, -26, 15, 25, 9, 1; ... Recurrence: -2 = T(4,1) = T(3,0) + (4-2)*T(3,1) = 0 + 2*(-1). Row polynomials: s(3,x) = -x+x^3 = (x-1)*s1(2,x) = (x-1)*(x+x^2). s(3,x) = (x-1)*s(2,x+1) = (x-1)*(-(x+1)+(x+1)^2). s(3,x) - s(3,x-1) = -x+x^3 -(-(x-1)+(x-1)^3) = 3*(-x+x^2) = 3*s(2,x).
References
- S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
Links
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
Programs
-
Maple
A094645_row := n -> seq((-1)^(n-k)*coeff(expand(pochhammer(x-n+2, n)), x, k), k=0..n): seq(print(A094645_row(n)), n=0..6); # Peter Luschny, May 16 2013
-
Mathematica
t[n_, k_] /; n >= k >= 0 := t[n, k] = t[n-1, k-1] + (n-2)*t[n-1, k]; t[n_, k_] /; n < k = 0; t[, -1] = 0; t[0, 0] = 1; Flatten[ Table[ t[n, k], {n, 0, 10}, {k, 0, n}] ] (* _Jean-François Alcover, Sep 29 2011, after recurrence *); Table[CoefficientList[t*(t-1)*Sum[(-1)^(n+m)*t^(m-1)*StirlingS1[n,m],{m,n}],t],{n,1,7}] (* Wouter Meeussen, May 15 2012 *)
Formula
E.g.f.: (1-y)^(1-x).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000142(n+1), A001710(n+2), A001715(n+3), A001720(n+4), A001725(n+5), A001730(n+6), A049388(n), A049389(n), A049398(n), A051431(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively. - Philippe Deléham, Nov 13 2007
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then |T(n,i)| = |f(n,i,-1)|, for n=1,2,...; i=0..n. - Milan Janjic, Dec 21 2008
From Wolfdieter Lang, Jun 20 2011: (Start)
T(n,k) = |S1(n-1,k-1)| - |S1(n-1,k)|, n >= 1, k >= 1, with |S1(n,k)| = A132393(n,k) (unsigned Stirling1).
Recurrence: T(n,k) = T(n-1,k-1) + (n-2)*T(n-1,k) if n >= k >= 0; T(n,k) = 0 if n < k; T(n,-1) = 0; T(0,0) = 1.
E.g.f. column k: (1-x)*((-log(1-x))^k)/k!. (End)
T(n,k) = Sum_{i=0..n} binomial(n,i)*(n-i)!*Stirling1(i,k)*TC(m,n,i) where TC(m,n,k) = Sum_{i=0..n-k} binomial(n+1,n-k-i)*Stirling2(i+m+1,i+1)*(-1)^i, m = 1 for n >= 0. See A130534, A370518 for m=0 and m=2. - Igor Victorovich Statsenko, Feb 27 2024
Comments