cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370519 Intersection of A002061 and A016105.

Original entry on oeis.org

21, 57, 133, 381, 553, 813, 993, 1057, 1333, 1561, 1641, 1893, 1981, 2653, 2757, 3193, 3661, 5257, 5853, 6973, 8373, 8557, 9121, 9313, 10713, 10921, 12657, 13341, 15253, 15501, 16257, 18633, 19741, 22053, 24493, 29413, 30801, 32221, 32581, 33673, 35157, 39801
Offset: 1

Views

Author

Marius A. Burtea, Feb 27 2024

Keywords

Comments

If p is a cuban prime (A002407) and p == 3 (mod 4) (A002145), then m = 3*p is a term. Indeed, there is k for which p = 1 + 3*k*(k + 1) and m = 3*p = 3 + 9*k*(k + 1) = (3*k + 2)^2 - (3*k + 2) + 1, so m is a term.
The sequence also includes terms that do not have this form: 133 = 12^2 - 12 + 1 = 7*19, 553 = 24^2 - 24 + 1 = 7*79, 1057 = 33^2 - 33 + 1 = 7*151, 1333 = 37^2 - 37 + 1= 31*43 and others.

Examples

			A002061(5) = 21 = A016105(1), so 21 is a term.
A002061(8) = 57 = A016105(3), so 57 is a term.
		

Crossrefs

Programs

  • Magma
    pd:=PrimeDivisors; blum:=func; [n:n in [s^2-s+1:s in [2..2000]]|blum(n)];
  • Maple
    N:= 10^5: # for terms <= N
    P:= select(isprime, [seq(i,i=3..N/3,4)]):
    sort(select(t -> t <= N and issqr(4*t-3), [seq(seq(P[i]*P[j],i=1..j-1),j=1..nops(P))])); # Robert Israel, Feb 27 2025
  • Mathematica
    TR=40000; R1=Ceiling[(1+Sqrt[1-4(1-TR)])/2]; R2=TR/4; Intersection[Table[n^2-n+1, {n, 0, R1}], Select[4Range[5, R2]+1, PrimeNu[#]==2&&MoebiusMu[#]==1&&Mod[FactorInteger[#][[1, 1]], 4]!=1&]] (* James C. McMahon, Feb 27 2024 *)