A370519 Intersection of A002061 and A016105.
21, 57, 133, 381, 553, 813, 993, 1057, 1333, 1561, 1641, 1893, 1981, 2653, 2757, 3193, 3661, 5257, 5853, 6973, 8373, 8557, 9121, 9313, 10713, 10921, 12657, 13341, 15253, 15501, 16257, 18633, 19741, 22053, 24493, 29413, 30801, 32221, 32581, 33673, 35157, 39801
Offset: 1
Keywords
Examples
A002061(5) = 21 = A016105(1), so 21 is a term. A002061(8) = 57 = A016105(3), so 57 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..572
Programs
-
Magma
pd:=PrimeDivisors; blum:=func
; [n:n in [s^2-s+1:s in [2..2000]]|blum(n)]; -
Maple
N:= 10^5: # for terms <= N P:= select(isprime, [seq(i,i=3..N/3,4)]): sort(select(t -> t <= N and issqr(4*t-3), [seq(seq(P[i]*P[j],i=1..j-1),j=1..nops(P))])); # Robert Israel, Feb 27 2025
-
Mathematica
TR=40000; R1=Ceiling[(1+Sqrt[1-4(1-TR)])/2]; R2=TR/4; Intersection[Table[n^2-n+1, {n, 0, R1}], Select[4Range[5, R2]+1, PrimeNu[#]==2&&MoebiusMu[#]==1&&Mod[FactorInteger[#][[1, 1]], 4]!=1&]] (* James C. McMahon, Feb 27 2024 *)
Comments