cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370540 Expansion of g.f. A(x) satisfying A(x)^2 = A(x^2) * (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).

Original entry on oeis.org

1, 1, 4, 12, 45, 157, 584, 2155, 8110, 30587, 116326, 443984, 1702272, 6546563, 25252094, 97638658, 378351696, 1468876958, 5712276601, 22247635905, 86765271643, 338795469496, 1324374411164, 5182303804184, 20297243177269, 79564763550396, 312137086267106, 1225421059470049
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2024

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 12*x^3 + 45*x^4 + 157*x^5 + 584*x^6 + 2155*x^7 + 8110*x^8 + 30587*x^9 + 116326*x^10 + 443984*x^11 + ...
RELATED SERIES.
We may illustrate the formulas using the following related series expansions.
Recall that the Catalan function C(x) = (1 - sqrt(1-4*x))/2 begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ... + A000108(n)*x^n + ...
(1) By definition, A(x) = sqrt( A(x^2) * F(x) ) where
F(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) begins
F(x) = 1 + 2*x + 8*x^2 + 30*x^3 + 118*x^4 + 462*x^5 + 1824*x^6 + 7208*x^7 + 28558*x^8 + ... + A370539(n)*x^n + ...
(2) Also, G(x) = G( x^2 + 2*x^2*G(x) )^(1/2) begins
G(x) = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 14*x^7 + 32*x^8 + 74*x^9 + 172*x^10 + 408*x^11 + ... + A356781(n)*x^n + ...
such that the series reversion of G(x) equals
x*A(x^2)*(1 - x*C(x^2)) = x - x^2 + x^3 - 2*x^4 + 4*x^5 - 7*x^6 + 12*x^7 - 23*x^8 + 45*x^9 - 84*x^10 + 157*x^11 - 302*x^12 + 584*x^13 - 1121*x^14 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(x = 'x + O('x^(n+4)), C(x) = (1 - sqrt(1 - 4*x))/(2*x), A = 1+x); for(i=1,n, A = sqrt( subst(A,'x,x^2) * (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) ) ); polcoeff(A,n);}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n and C(x) = (1 - sqrt(1-4*x))/2 satisfy the following formulas.
(1) A(x)^2 = A(x^2) * F(x) where F(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) is the g.f. of A370539.
(2) G( x*A(x^2)*(1 - x*C(x^2)) ) = x, where G(x) = G( x^2 + 2*x^2*G(x) )^(1/2) is the g.f. of A356781.
a(n) ~ c * 4^n / sqrt(n), where c = 0.3550434768046000612979284344613941075803... - Vaclav Kotesovec, Mar 14 2024