A370540 Expansion of g.f. A(x) satisfying A(x)^2 = A(x^2) * (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
1, 1, 4, 12, 45, 157, 584, 2155, 8110, 30587, 116326, 443984, 1702272, 6546563, 25252094, 97638658, 378351696, 1468876958, 5712276601, 22247635905, 86765271643, 338795469496, 1324374411164, 5182303804184, 20297243177269, 79564763550396, 312137086267106, 1225421059470049
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 12*x^3 + 45*x^4 + 157*x^5 + 584*x^6 + 2155*x^7 + 8110*x^8 + 30587*x^9 + 116326*x^10 + 443984*x^11 + ... RELATED SERIES. We may illustrate the formulas using the following related series expansions. Recall that the Catalan function C(x) = (1 - sqrt(1-4*x))/2 begins C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ... + A000108(n)*x^n + ... (1) By definition, A(x) = sqrt( A(x^2) * F(x) ) where F(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) begins F(x) = 1 + 2*x + 8*x^2 + 30*x^3 + 118*x^4 + 462*x^5 + 1824*x^6 + 7208*x^7 + 28558*x^8 + ... + A370539(n)*x^n + ... (2) Also, G(x) = G( x^2 + 2*x^2*G(x) )^(1/2) begins G(x) = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 14*x^7 + 32*x^8 + 74*x^9 + 172*x^10 + 408*x^11 + ... + A356781(n)*x^n + ... such that the series reversion of G(x) equals x*A(x^2)*(1 - x*C(x^2)) = x - x^2 + x^3 - 2*x^4 + 4*x^5 - 7*x^6 + 12*x^7 - 23*x^8 + 45*x^9 - 84*x^10 + 157*x^11 - 302*x^12 + 584*x^13 - 1121*x^14 + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..600
Programs
-
PARI
{a(n) = my(x = 'x + O('x^(n+4)), C(x) = (1 - sqrt(1 - 4*x))/(2*x), A = 1+x); for(i=1,n, A = sqrt( subst(A,'x,x^2) * (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) ) ); polcoeff(A,n);} for(n=0,30, print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=1} a(n)*x^n and C(x) = (1 - sqrt(1-4*x))/2 satisfy the following formulas.
(1) A(x)^2 = A(x^2) * F(x) where F(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) is the g.f. of A370539.
(2) G( x*A(x^2)*(1 - x*C(x^2)) ) = x, where G(x) = G( x^2 + 2*x^2*G(x) )^(1/2) is the g.f. of A356781.
a(n) ~ c * 4^n / sqrt(n), where c = 0.3550434768046000612979284344613941075803... - Vaclav Kotesovec, Mar 14 2024