A370541 Expansion of g.f. A(x) = Product_{n>=1} (1 + x^(n-1) + x^(2*n-1)) * (1 + x^n + x^(2*n-1)) * (1 - x^n - x^(2*n)).
2, 5, 0, -1, 0, -18, -15, -23, -36, -25, -52, -35, -42, -8, 13, 4, 96, 100, 208, 227, 388, 434, 499, 709, 670, 837, 883, 1057, 775, 1044, 819, 643, 535, -78, -345, -970, -1494, -3017, -3142, -5078, -6102, -7711, -9410, -11406, -13148, -15353, -17831, -18841, -22708, -22955, -26117
Offset: 0
Keywords
Examples
G.f.: A(x) = 2 + 5*x - x^3 - 18*x^5 - 15*x^6 - 23*x^7 - 36*x^8 - 25*x^9 - 52*x^10 - 35*x^11 - 42*x^12 - 8*x^13 + 13*x^14 + 4*x^15 + 96*x^16 + 100*x^17 + ... where A(x) equals the infinite product A(x) = (2 + x)*(1 + 2*x)*(1 - x - x^2) * (1 + x + x^3)*(1 + x^2 + x^3)*(1 - x^2 - x^4) * (1 + x^2 + x^5)*(1 + x^3 + x^5)*(1 - x^3 - x^6) * (1 + x^3 + x^7)*(1 + x^4 + x^7)*(1 - x^4 - x^8) * (1 + x^4 + x^9)*(1 + x^5 + x^9)*(1 - x^5 - x^10) * (1 + x^5 + x^11)*(1 + x^6 + x^11)*(1 - x^6 - x^12) * (1 + x^6 + x^13)*(1 + x^7 + x^13)*(1 - x^7 - x^14) * ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..6400
Programs
-
PARI
{a(n) = my(A); A = prod(m=1,n+1, (1 + x^(m-1) + x^(2*m-1)) * (1 + x^m + x^(2*m-1)) * (1 - x^m - x^(2*m)) +x*O(x^n)); polcoeff(A,n)} for(n=0,50, print1(a(n),", "))
Comments