cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370544 Expansion of the Jacobi elliptic function dn(x,k) at k = 2 (even powers only).

Original entry on oeis.org

1, -4, 32, -832, 41216, -3168256, 359518208, -56319950848, 11624409595904, -3059387770077184, 999955757611876352, -397353151288859164672, 188655750511199441125376, -105472284295853235792510976, 68582751548430569936978444288, -51320267059211655419226235076608
Offset: 0

Views

Author

Paul D. Hanna, Mar 25 2024

Keywords

Examples

			E.g.f.: D(x) = 1 - 4*x^2/2! + 32*x^4/4! - 832*x^6/6! + 41216*x^8/8! - 3168256*x^10/10! + 359518208*x^12/12! - 56319950848*x^14/14! + ...
where D(x) = dn(x,2).
		

References

  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Cf. A028296 (dn(x,1)), A060627 (cn(x,k)).
Cf. A370542 (sn(x,2)), A370543 (cn(x,2)), A249282.

Programs

  • Maple
    # a(n) = (2*n)! * [x^(2*n)] dn(x, 2).
    dn_list := proc(k, len) local n; seq((2*n)!*coeff(series(JacobiDN(z, k), z,
    2*len + 2), z, 2*n), n = 0..len) end:
    dn_list(2, 15);  # Peter Luschny, Mar 25 2024
  • Mathematica
    nmax = 20;
    DeleteCases[CoefficientList[JacobiDN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax])! (* Jean-François Alcover, Mar 28 2024 *)
  • PARI
    /* D(x) = Jacobi Elliptic Function dn(x,k) at k = 2: */
    {a(n) = my(k=2, C=1,S=x,D=1); for(i=1,n,
    S = intformal(C*D + x*O(x^(2*n+1)));
    C = 1 - intformal(S*D);
    D = 1 - k^2*intformal(S*C)); (2*n)!*polcoeff(D,2*n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = (-1)^n * Sum_{k=0..n-1} A060627(n,k)*4^(n-k) for n >= 1, with a(0) = 1.
E.g.f. D(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) D(x) = dn(x,k) at k = 2.
(2.a) D(x) = cn(2*x, 1/2).
(2.b) D(x) = (4 - 8*sn(x,1/2)^2 + sn(x,1/2)^4) / (4 - sn(x,1/2)^4).
(3) D(x) = 1 - Integral sqrt(1 - D(x)^2) * sqrt(3 + D(x)^2) dx.
(4) D(x) = cos( Integral sqrt(3 + D(x)^2) dx ).
(5.a) D(x) = sqrt(1 - 4*sn(x,2)^2).
(5.b) D(x) = sqrt(4*cn(x,2)^2 - 3).
O.g.f. 1/(1 + 4*x/(1 + 2^2*x/(1 + 4*3^2*x/(1 + 4^2*x/(1 + 4*5^2*x/(1 + 6^2*x/(1 + 4*7^2*x/(1 + ...)))))))) = 1 - 4*x + 32*x^2 - 832*x^3 + 41216*x^4 - 3168256*x^5 + ... (continued fraction, see Wall, 94.19, p. 374).
a(n) ~ (-1)^n * 2^(4*n+3) * agm(1,2)^(2*n+1) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024