A370548 a(n) is the denominator of the real part of Product_{k=1..n} (1/k + i) where i is the imaginary unit.
1, 2, 3, 12, 12, 72, 252, 2016, 18144, 36288, 199584, 2395008, 2395008, 33530112, 50295168, 804722688, 804722688, 14485008384, 137607579648, 550430318592, 11559036690432, 254298807189504, 2924436282679296, 3694024778121216, 70186470784303104, 140372941568606208
Offset: 1
Examples
See A370547.
Programs
-
PARI
a370548(n) = denominator(real(prod(k=1, n, 1/k+I)))
-
Python
from math import factorial, gcd from sympy.functions.combinatorial.numbers import stirling def A370548(n): return (a:=factorial(n))//gcd(a,sum(stirling(n+1,n+1-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n+1>>1)+1))) # Chai Wah Wu, Feb 22 2024
Formula
a(n) = denominator of A105750(n)/n!. - Chai Wah Wu, Feb 22 2024