A370554 a(n) is the denominator of the imaginary part of Product_{k=1..n} (1 + i/k) where i is the imaginary unit.
1, 2, 3, 3, 12, 24, 252, 56, 18144, 5184, 199584, 33264, 2395008, 48384, 50295168, 100590336, 804722688, 146313216, 137607579648, 6552741888, 11559036690432, 1216740704256, 2924436282679296, 835553223622656, 70186470784303104, 226043384168448, 1895034711176183808
Offset: 1
Examples
See A370551.
Programs
-
PARI
a370554(n) = denominator(imag(prod(k=1, n, 1+I/k)))
-
Python
from math import factorial, gcd from sympy.functions.combinatorial.numbers import stirling def A370554(n): return (a:=factorial(n))//gcd(a,sum(stirling(n+1,k<<1,kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1))) # Chai Wah Wu, Feb 22 2024
Formula
a(n) = denominator of A231531(n)/n!. - Chai Wah Wu, Feb 22 2024