A370591 Number of minimal subsets of {1..n} such that it is not possible to choose a different prime factor of each element (non-choosable).
0, 1, 1, 1, 2, 2, 4, 4, 7, 11, 16, 16, 30, 30, 39, 73
Offset: 0
Examples
The a(1) = 1 through a(10) = 16 subsets: {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {2,4} {2,4} {2,4} {2,4} {2,4} {2,4} {2,4} {2,3,6} {2,3,6} {2,8} {2,8} {2,8} {3,4,6} {3,4,6} {4,8} {3,9} {3,9} {2,3,6} {4,8} {4,8} {3,4,6} {2,3,6} {2,3,6} {3,6,8} {2,6,9} {2,6,9} {3,4,6} {3,4,6} {3,6,8} {3,6,8} {4,6,9} {4,6,9} {6,8,9} {6,8,9} {2,5,10} {4,5,10} {5,8,10} {3,5,6,10} {5,6,9,10}
Crossrefs
Programs
-
Mathematica
Table[Length[fasmin[Select[Subsets[Range[n]], Length[Select[Tuples[prix/@#],UnsameQ@@#&]]==0&]]], {n,0,15}]