A370592 Number of integer partitions of n such that it is possible to choose a different prime factor of each part.
1, 0, 1, 1, 1, 2, 1, 3, 3, 4, 4, 5, 6, 7, 9, 11, 12, 12, 16, 18, 22, 26, 29, 29, 37, 41, 49, 55, 61, 68, 72, 88, 98, 110, 120, 135, 146, 166, 190, 209, 227, 252, 277, 309, 346, 379, 413, 447, 500, 548, 606, 665, 727, 785, 857, 949, 1033, 1132, 1228, 1328, 1440
Offset: 0
Keywords
Examples
The partition (10,6,4) has choice (5,3,2) so is counted under a(20). The a(0) = 1 through a(10) = 4 partitions: () . (2) (3) (4) (5) (6) (7) (8) (9) (10) (3,2) (4,3) (5,3) (5,4) (6,4) (5,2) (6,2) (6,3) (7,3) (7,2) (5,3,2) The a(0) = 1 through a(17) = 12 partitions (0 = {}, A..H = 10..17): 0 . 2 3 4 5 6 7 8 9 A B C D E F G H 32 43 53 54 64 65 66 76 86 87 97 98 52 62 63 73 74 75 85 95 96 A6 A7 72 532 83 A2 94 A4 A5 B5 B6 92 543 A3 B3 B4 C4 C5 732 B2 C2 C3 D3 D4 652 653 D2 E2 E3 743 654 754 F2 752 753 763 665 762 853 764 A32 952 A43 B32 7532
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,30}]