A370595 Number of integer partitions of n such that only one set can be obtained by choosing a different divisor of each part.
1, 1, 0, 1, 2, 0, 3, 2, 4, 3, 4, 5, 8, 9, 8, 13, 12, 17, 16, 27, 28, 33, 36, 39, 50, 58, 65, 75, 93, 94, 112, 125, 148, 170, 190, 209, 250, 273, 305, 341, 403, 432, 484, 561, 623, 708, 765, 873, 977, 1109, 1178, 1367, 1493, 1669, 1824, 2054, 2265, 2521, 2770
Offset: 0
Keywords
Examples
The a(1) = 1 through a(15) = 13 partitions (A = 10, B = 11, C = 12, D = 13): 1 . 21 22 . 33 322 71 441 55 533 B1 553 77 933 31 51 421 332 522 442 722 444 733 D1 B22 321 422 531 721 731 552 751 B21 B31 521 4321 4322 4332 931 4433 4443 5321 4431 4432 5441 5442 5322 5332 6332 5532 5421 5422 7322 6621 6321 6322 7421 7332 7321 7422 7521 8421 9321 54321
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]==1&]],{n,0,30}]
Extensions
More terms from Jinyuan Wang, Feb 14 2025
Comments