A370579
a(n) = n! * Sum_{d|n} 1/(d-1)!.
Original entry on oeis.org
1, 4, 9, 52, 125, 1806, 5047, 87368, 544329, 7408810, 39916811, 1281329292, 6227020813, 174477663374, 2015997984015, 45336862771216, 355687428096017, 16059446167564818, 121645100408832019, 5372665305815808020, 76707372899469312021, 2248001765299683993622
Offset: 1
-
a(n) = n!*sumdiv(n, d, 1/(d-1)!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k*exp(x^k))))
A370603
a(n) = n! * Sum_{d|n} 1/((d-1)! * (n/d)!^(d-1)).
Original entry on oeis.org
1, 4, 9, 40, 125, 936, 5047, 42848, 367929, 3668500, 39916811, 480577032, 6227020813, 87197480384, 1307761815375, 20923593490816, 355687428096017, 6402405005606628, 121645100408832019, 2432903231908929800, 51090944698284691221, 1124000756238680570272
Offset: 1
-
a(n) = n!*sumdiv(n, d, 1/((d-1)!*(n/d)!^(d-1)));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k*exp(x^k/k!))))
Showing 1-2 of 2 results.