cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370617 Coefficient of x^n in the expansion of 1 / (1-x-x^2)^(2*n).

Original entry on oeis.org

1, 2, 14, 98, 726, 5522, 42770, 335512, 2656998, 21195944, 170076214, 1371181110, 11098310730, 90128497032, 734008622872, 5992486341248, 49028047353670, 401885885751630, 3299812135410080, 27134786911366212, 223433635272820126, 1842041118321640390
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=2, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k-1,k) * binomial(3*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^2 ). See A368961.

A370619 Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^(2*n).

Original entry on oeis.org

1, 0, 4, 6, 44, 120, 610, 2114, 9468, 36384, 155644, 626450, 2638994, 10856924, 45565118, 189579786, 796023260, 3333362040, 14022032560, 58960463548, 248542728364, 1048148750060, 4427187324102, 18712146312998, 79177190666034, 335259593600120, 1420797366753600
Offset: 0

Views

Author

Seiichi Manyama, May 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k-1,k) * binomial(n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^2 / (1-x)^2 ). See A368957.
Showing 1-2 of 2 results.