A370640 Number of maximal subsets of {1..n} such that it is possible to choose a different binary index of each element.
1, 1, 1, 3, 3, 8, 17, 32, 32, 77, 144, 242, 383, 580, 843, 1201, 1201, 2694, 4614, 7096, 10219, 14186, 19070, 25207, 32791, 42160, 53329, 66993, 82811, 101963, 124381, 151286, 151286, 324695, 526866, 764438, 1038089, 1358129, 1725921, 2154668, 2640365, 3202985
Offset: 0
Keywords
Examples
The a(0) = 1 through a(6) = 17 subsets: {} {1} {1,2} {1,2} {1,2,4} {1,2,4} {1,2,4} {1,3} {1,3,4} {1,2,5} {1,2,5} {2,3} {2,3,4} {1,3,4} {1,2,6} {1,3,5} {1,3,4} {2,3,4} {1,3,5} {2,3,5} {1,3,6} {2,4,5} {1,4,6} {3,4,5} {1,5,6} {2,3,4} {2,3,5} {2,3,6} {2,4,5} {2,5,6} {3,4,5} {3,4,6} {3,5,6} {4,5,6} The a(0) = 1 through a(6) = 17 set-systems: {1} {1}{2} {1}{2} {1}{2}{3} {1}{2}{3} {1}{2}{3} {1}{12} {1}{12}{3} {1}{12}{3} {1}{12}{3} {2}{12} {2}{12}{3} {1}{2}{13} {1}{2}{13} {2}{12}{3} {1}{2}{23} {2}{3}{13} {1}{3}{23} {1}{12}{13} {2}{12}{3} {12}{3}{13} {2}{3}{13} {2}{12}{13} {1}{12}{13} {1}{12}{23} {1}{13}{23} {12}{3}{13} {12}{3}{23} {2}{12}{13} {2}{12}{23} {2}{13}{23} {3}{13}{23} {12}{13}{23}
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
-
PARI
lista(nn) = my(b, m=Map(Mat([[[]], 1])), t, u, v, w, z); for(n=0, nn, t=Mat(m)~; b=Vecrev(binary(n)); u=select(i->b[i], [1..#b]); for(i=1, #t, v=t[1, i]; w=List([]); for(j=1, #v, for(k=1, #u, if(!setsearch(v[j], u[k]), listput(w, setunion(v[j], [u[k]]))))); w=Set(w); if(#w, z=0; mapisdefined(m, w, &z); mapput(m, w, z+t[2, i]))); print1(mapget(m, [[1..#b]]), ", ")); \\ Jinyuan Wang, Mar 28 2025
Extensions
More terms from Jinyuan Wang, Mar 28 2025
Comments