A370644 Number of minimal subsets of {2..n} such that it is not possible to choose a different binary index of each element.
0, 0, 0, 0, 0, 1, 4, 13, 13, 26, 56, 126, 243, 471, 812, 1438
Offset: 0
Examples
The a(0) = 0 through a(7) = 13 subsets: . . . . . {2,3,4,5} {2,4,6} {2,4,6} {2,3,4,5} {2,3,4,5} {2,3,5,6} {2,3,4,7} {3,4,5,6} {2,3,5,6} {2,3,5,7} {2,3,6,7} {2,4,5,7} {2,5,6,7} {3,4,5,6} {3,4,5,7} {3,4,6,7} {3,5,6,7} {4,5,6,7} The a(0) = 0 through a(7) = 13 set-systems: . . . . . {2}{12}{3}{13} {2}{3}{23} {2}{3}{23} {2}{12}{3}{13} {2}{12}{3}{13} {12}{3}{13}{23} {12}{3}{13}{23} {2}{12}{13}{23} {2}{12}{13}{23} {2}{12}{3}{123} {2}{3}{13}{123} {12}{3}{13}{123} {12}{3}{23}{123} {2}{12}{13}{123} {2}{12}{23}{123} {2}{13}{23}{123} {3}{13}{23}{123} {12}{13}{23}{123}
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]]; Table[Length[fasmin[Select[Subsets[Range[2,n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}]
Comments