A370647 Numbers such that only one set can be obtained by choosing a different prime factor of each prime index.
1, 3, 5, 7, 11, 15, 17, 19, 23, 31, 33, 35, 39, 41, 51, 53, 55, 59, 65, 67, 69, 77, 83, 85, 87, 91, 93, 95, 97, 103, 109, 111, 119, 123, 127, 129, 131, 155, 157, 161, 165, 169, 177, 179, 183, 185, 187, 191, 201, 203, 205, 209, 211, 213, 217, 227, 235, 237, 241
Offset: 1
Keywords
Examples
The prime indices of 91 are {4,6}, with only choice {2,3}, so 91 is in the sequence. The terms together with their prime indices begin: 1: {} 53: {16} 109: {29} 3: {2} 55: {3,5} 111: {2,12} 5: {3} 59: {17} 119: {4,7} 7: {4} 65: {3,6} 123: {2,13} 11: {5} 67: {19} 127: {31} 15: {2,3} 69: {2,9} 129: {2,14} 17: {7} 77: {4,5} 131: {32} 19: {8} 83: {23} 155: {3,11} 23: {9} 85: {3,7} 157: {37} 31: {11} 87: {2,10} 161: {4,9} 33: {2,5} 91: {4,6} 165: {2,3,5} 35: {3,4} 93: {2,11} 169: {6,6} 39: {2,6} 95: {3,8} 177: {2,17} 41: {13} 97: {25} 179: {41} 51: {2,7} 103: {27} 183: {2,18}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Length[Union[Sort /@ Select[Tuples[prix/@prix[#]],UnsameQ@@#&]]]==1&]
Comments